Structure of group invariant weighing matrices of small weight

Abstract We show that every weighing matrix of weight n invariant under a finite abelian group G can be generated from a subgroup H of G with | H | ≤ 2 n − 1 . Furthermore, if n is an odd prime power and a proper circulant weighing matrix of weight n and order v exists, then v ≤ 2 n − 1 . We also obtain a lower bound on the weight of group invariant matrices depending on the invariant factors of the underlying group. These results are obtained by investigating the structure of subsets of finite abelian groups that do not have unique differences.

[1]  Ali Nabavi,et al.  Determination of all possible orders of weight 16 circulant weighing matrices , 2006, Finite Fields Their Appl..

[2]  Richard Hain Circulant weighing matrices , 1977 .

[3]  Dieter Jungnickel,et al.  The Solution of the Waterloo Problem , 1995, J. Comb. Theory, Ser. A.

[4]  K. T. Arasu,et al.  Group developed weighing matrices , 2013, Australas. J Comb..

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Bernhard Schmidt,et al.  Finiteness of circulant weighing matrices of fixed weight , 2011, J. Comb. Theory, Ser. A.

[7]  Bernhard Schmidt,et al.  Characters and Cyclotomic Fields in Finite Geometry , 2002 .

[8]  K. T. Arasu,et al.  Some New Results on Circulant Weighing Matrices , 2001 .

[9]  A. Pott,et al.  Difference sets, sequences and their correlation properties , 1999 .

[10]  Albert Leon Whiteman,et al.  Some results on weighing matrices , 1975, Bulletin of the Australian Mathematical Society.

[11]  E. Steinitz Rechteckige Systeme und Moduln in algebraischen Zahlkörpern. II , 1912 .

[12]  Jennifer Seberry,et al.  Weighing matrices and their applications , 1997 .

[13]  R. McFarland,et al.  On multipliers of abelian difference sets , 1970 .

[14]  Hanfried Lenz,et al.  Design theory , 1985 .

[15]  K. T. Arasu,et al.  Perfect Ternary Arrays , 1999 .

[16]  Christopher Norman Finitely Generated Abelian Groups and Similarity of Matrices over a Field , 2012 .

[18]  Ali Nabavi,et al.  Circulant weighing matrices of weight 22t , 2006, Des. Codes Cryptogr..

[19]  Circulant (v,k,μ) designs , 1980 .

[20]  Siu Lun Ma,et al.  Symmetric Weighing Matrices Constructed using Group Matrices , 2005, Des. Codes Cryptogr..

[21]  Jennifer Seberry,et al.  Circulant weighing matrices , 2010, Cryptography and Communications.