Player Adaptive GMM-based Dynamic Game Level Design

In computer games, the level design and balance of characters are the key features for developing interesting games. Level designers make decision to change the parameters and opponent behaviors in order to avoid the player getting extremely frustrated with the improper level. Generally, opponent behavior is defined by static script, this causes the games to have static difficulty level and static environment. Therefore, it is difficult to keep track of the user playing interest, because a player can easily adapt to changeless repetition. In this paper, we propose a dynamic scripting method that able to maintain the level designers' intention where user enjoys the game by adjusting the opponent behavior while playing the game. The player's countermeasure pattern for dynamic level design is modeled using a Gaussian Mixture Model (GMM). The proposed method is applied to a shooting game, and the experimental results maintain the degree of interest intended by the level designer.