Moving frames and differential invariants in centro-affine geometry
暂无分享,去创建一个
[1] H. Guggenheimer. Hill equations with coexisting periodic solutions , 1969 .
[2] Irina A. Kogan,et al. Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex , 2003 .
[3] Konstantin Sergeevich Sibirsky. Introduction to the Algebraic Theory of Invariants of Differential Equations , 1989 .
[4] P. Olver. Equivalence, Invariants, and Symmetry: References , 1995 .
[5] H. Sussmann,et al. Differential Geometry and Control , 1998 .
[6] P. Olver. Moving frames , 2003, J. Symb. Comput..
[7] Centro-affine Geometry in the Plane and Feedback Invariants of Two-state Scalar Control Systems , 1998 .
[8] P. Olver. Differential invariants of surfaces , 2009 .
[9] Evelyne Hubert,et al. Differential Invariants of Conformal and Projective Surfaces , 2007, 0710.0519.
[10] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[11] Peter J. Olver,et al. Symmetries and Integrability of Difference Equations , 1999 .
[12] G. Wilkens,et al. The fundamental theorems of curves and hypersurfaces in centro-affine geometry , 1997 .
[13] P. Olver. Invariant submanifold flows , 2008 .
[14] Irina A. Kogan,et al. Inductive Construction of Moving Frames , 2006 .
[15] D. Khadjiev,et al. On invariants of curves in centro-affine geometry , 2004 .