Lhcb9-dependent photosystem I structure in moss reveals evolutionary adaptation to changing light conditions during aquatic-terrestrial transition

In plants and green algae, light-harvesting complexes I and II (LHCI and LHCII) constitute the antennae of photosystem I (PSI), thus effectively increasing the cross-section of the PSI core. The moss Physcomitrium patens (P. patens) represents a well-studied evolutionary intermediate between green algae and flowering plants. P. patens possesses at least three types of PSI with different antenna sizes. The largest PSI form (PpPSI-L) exhibits a unique organization found neither in flowering plants nor in algae. Its formation is mediated by the P. patens-specific LHC protein, Lhcb9. While previous studies revealed the overall architecture of the PpPSI-L, its assembly details and the relationship between different PpPSI types remain unclear. Here, we report a high-resolution structure of the PpPSI-L. We identified 14 PSI core subunits, one Lhcb9, one phosphorylated LHCII trimer, and eight LHCI monomers arranged as two belts. Our structural analysis established the essential role of Lhcb9 and the phosphorylated LHCII in stabilizing the complex. In addition, our results suggest that PpPSI switches between three different types, which share identical modules. This feature may contribute to the quick and dynamic adjustment of the light-harvesting capability of PSI under different light conditions.

[1]  D. Häder Photosynthesis in Plants and Algae , 2022, AntiCancer Research.

[2]  R. Sharma,et al.  How plants conquered land: evolution of terrestrial adaptation , 2022, Journal of evolutionary biology.

[3]  T. Morosinotto,et al.  Role of serine/threonine protein kinase STN7 in the formation of two distinct photosystem I supercomplexes in Physcomitrium patens , 2022, Plant physiology.

[4]  Xiuxiu Li,et al.  Assembly of LHCA5 into PSI blue shifts the far-red fluorescence emission in higher plants. , 2022, Biochemical and biophysical research communications.

[5]  Mei Li,et al.  Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. , 2022, Molecular plant.

[6]  Y. Mazor,et al.  The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4 , 2021, Nature Plants.

[7]  Jian-Ren Shen,et al.  Architecture of the chloroplast PSI–NDH supercomplex in Hordeum vulgare , 2021, Nature.

[8]  Lin Guo,et al.  Structural Diversity of Photosystem I and Its Light-Harvesting System in Eukaryotic Algae and Plants , 2021, Frontiers in Plant Science.

[9]  K. Takizawa,et al.  Structural basis of LhcbM5-mediated state transitions in green algae , 2021, Nature Plants.

[10]  Jian-Ren Shen,et al.  Antenna arrangement and energy-transfer pathways of PSI–LHCI from the moss Physcomitrella patens , 2021, Cell Discovery.

[11]  A. Aouane,et al.  Guanosine tetraphosphate (ppGpp) accumulation inhibits chloroplast gene expression and promotes super grana formation in the moss Physcomitrium (Physcomitrella) patens , 2021, bioRxiv.

[12]  S. Scheres,et al.  Multi-body Refinement of Cryo-EM Images in RELION. , 2021, Methods in molecular biology.

[13]  J Gomez-Blanco,et al.  DeepEMhancer: a deep learning solution for cryo-EM volume post-processing , 2020, Communications Biology.

[14]  S. Rensing,et al.  The Moss Physcomitrium (Physcomitrella) patens: A Model Organism for Non-Seed Plants[OPEN] , 2020, Plant Cell.

[15]  Mei Li,et al.  Structural analysis and comparison of light-harvesting complexes I and II. , 2020, Biochimica et biophysica acta. Bioenergetics.

[16]  T. Morosinotto,et al.  Thylakoid Protein Phosphorylation Dynamics in a Moss Mutant Lacking SERINE/THREONINE PROTEIN KINASE STN8. , 2019, Plant physiology.

[17]  N. Miyazaki,et al.  Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I , 2019, Nature Plants.

[18]  Mei Li,et al.  Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex , 2019, Nature Plants.

[19]  Patricia Grob,et al.  A unique supramolecular organization of photosystem I in the moss Physcomitrella patens , 2018, Nature Plants.

[20]  E. Boekema,et al.  A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens , 2018, Nature Plants.

[21]  Sreedhar Nellaepalli,et al.  The photosystem I assembly apparatus consisting of Ycf3–Y3IP1 and Ycf4 modules , 2018, Nature Communications.

[22]  E. Lindahl,et al.  Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION , 2018, bioRxiv.

[23]  Mark N. Puttick,et al.  The timescale of early land plant evolution , 2018, Proceedings of the National Academy of Sciences.

[24]  M. Yokono,et al.  Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. , 2017, Current opinion in plant biology.

[25]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[26]  Zhenfeng Liu,et al.  Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution , 2016, Nature.

[27]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[28]  Jian-Ren Shen,et al.  Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex , 2015, Science.

[29]  A. Nakano,et al.  Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens , 2015, Nature Plants.

[30]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[31]  Stephane Rombauts,et al.  Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions , 2013, BMC Genomics.

[32]  O. Jensen,et al.  Composition and structure of photosystem I in the moss Physcomitrella patens , 2013, Journal of experimental botany.

[33]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[34]  E. Boekema,et al.  Photosystem I of Chlamydomonas reinhardtii Contains Nine Light-harvesting Complexes (Lhca) Located on One Side of the Core* , 2011, The Journal of Biological Chemistry.

[35]  J. Minagawa State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. , 2011, Biochimica et biophysica acta.

[36]  T. Morosinotto,et al.  A Red-shifted Antenna Protein Associated with Photosystem II in Physcomitrella patens* , 2011, The Journal of Biological Chemistry.

[37]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[38]  R. Croce,et al.  The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. , 2011, The Biochemical journal.

[39]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[40]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[41]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[42]  T. Morosinotto,et al.  In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation , 2008, PloS one.

[43]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[44]  J. Rochaix Role of thylakoid protein kinases in photosynthetic acclimation , 2007, FEBS letters.

[45]  Henrik Vibe Scheller,et al.  Structure, function and regulation of plant photosystem I. , 2007, Biochimica et biophysica acta.

[46]  R. Luciński,et al.  Lhca5 interaction with plant photosystem I , 2006, FEBS letters.

[47]  Nathan Nelson,et al.  Structure and function of photosystems I and II. , 2006, Annual review of plant biology.

[48]  D. Leister,et al.  Abundantly and Rarely Expressed Lhc Protein Genes Exhibit Distinct Regulation Patterns in Plants1[W] , 2006, Plant Physiology.

[49]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[50]  R. G. Walters,et al.  Towards an understanding of photosynthetic acclimation. , 2004, Journal of experimental botany.

[51]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[52]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[53]  S. Jansson,et al.  Lhca5 – an LHC-Type Protein Associated with Photosystem I , 2004, Plant Molecular Biology.

[54]  Nathan Nelson,et al.  Crystal structure of plant photosystem I , 2003, Nature.

[55]  E. Stauber,et al.  Proteomics of Chlamydomonas reinhardtii Light-Harvesting Proteins , 2003, Eukaryotic Cell.

[56]  S. Jansson,et al.  A guide to the Lhc genes and their relatives in Arabidopsis/IT> , 1999, Trends in plant science.

[57]  C. M. Donohue,et al.  DISTRIBUTION OF THE XANTHOPHYLL LOROXANTHIN IN DESMIDS (CHAROPHYCEAE, CHLOROPHYTA) 1 , 1995 .

[58]  J. Allen,et al.  Protein phosphorylation in regulation of photosynthesis. , 1992, Biochimica et biophysica acta.

[59]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[60]  H. Gaffron Evolution of photosynthesis. , 1962, Comparative biochemistry and physiology.