The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in R^3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time.

[1]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[2]  Colin B. Macdonald,et al.  Segmentation on surfaces with the Closest Point Method , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[3]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[4]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[5]  Andrew Corrigan,et al.  Computing and Rendering Implicit Surfaces Composed of Radial Basis Functions on the GPU , 2005 .

[6]  F. Mémoli,et al.  Implicit brain imaging , 2004, NeuroImage.

[7]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[8]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[9]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[10]  Colin B. Macdonald,et al.  Solving eigenvalue problems on curved surfaces using the Closest Point Method , 2011, J. Comput. Phys..

[11]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[12]  Hans-Peter Seidel,et al.  A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions , 2003, 2003 Shape Modeling International..

[13]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[14]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH Courses.

[15]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[16]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2002, TOGS.

[17]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[18]  Qiang Du,et al.  Finite element approximation of the Cahn–Hilliard equation on surfaces , 2011 .

[19]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[20]  Holger Wendland,et al.  Fast evaluation of radial basis functions : methods based on partition of unity , 2002 .

[21]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[23]  Danny C. Sorensen,et al.  Computing the Eigenvalues of the Laplace-Beltrami Operator on the Surface of a Torus: A Numerical Approach , 2008 .

[24]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[25]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[26]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[29]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[30]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[31]  Jean-François Remacle,et al.  CAD and mesh repair with Radial Basis Functions , 2012, J. Comput. Phys..

[32]  Richard K. Beatson,et al.  Smooth surface reconstruction from noisy range data , 2003, GRAPHITE '03.

[33]  C. M. Elliott,et al.  Numerical computation of advection and diffusion on evolving diffuse interfaces , 2011 .

[34]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[35]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[36]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[37]  B. Fornberg,et al.  Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .

[38]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[39]  Grady B. Wright,et al.  Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..

[40]  Steven J. Ruuth,et al.  Diffusion generated motion of curves on surfaces , 2007, J. Comput. Phys..

[41]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[42]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[43]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH 1999.

[44]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[45]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..

[46]  Lok Ming Lui,et al.  Solving PDEs on Manifolds with Global Conformal Parametriazation , 2005, VLSM.

[47]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[48]  James F. O'Brien,et al.  Variational Implicit Surfaces , 1999 .

[49]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..