Discrete Hamilton-Jacobi theory and discrete optimal control

We develop a discrete analogue of Hamilton-Jacobi theory in the framework of discrete Hamiltonian mechanics. The resulting discrete Hamilton-Jacobi equation is discrete only in time. The correspondence between discrete and continuous Hamiltonian mechanics naturally gives rise to a discrete analogue of Jacobi's solution to the Hamilton-Jacobi equation. We prove discrete analogues of Jacobi's solution to the Hamilton-Jacobi equation and of the geometric Hamilton-Jacobi theorem. These results are readily applied to the discrete optimal control setting, and some well-known results in discrete optimal control theory, such as the Bellman equation, follow immediately. We also apply the theory to discrete linear Hamiltonian systems, and show that the discrete Riccati equation follows as a special case.

[1]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[2]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[3]  Jerrold E. Marsden,et al.  Foundations of computational geometric mechanics , 2004 .

[4]  Jeremy Schiff,et al.  The Hamilton-Jacobi difference equation , 2004 .

[5]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[6]  Gregory S. Ammar,et al.  The geometry of matrix eigenvalue methods , 1986 .

[7]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[8]  J. W. Humberston Classical mechanics , 1980, Nature.

[9]  S. Lall,et al.  Discrete variational Hamiltonian mechanics , 2006 .

[10]  James A. Cadzow,et al.  Discrete calculus of variations , 1970 .

[11]  V. Jurdjevic Geometric control theory , 1996 .

[12]  Y. Suris,et al.  Discrete Lagrangian Models , 2004 .

[13]  Jerrold E. Marsden,et al.  Discrete Routh reduction , 2006 .

[14]  Tomoki Ohsawa,et al.  Discrete Hamilton-Jacobi Theory , 2009, SIAM J. Control. Optim..

[15]  C. Lanczos The variational principles of mechanics , 1949 .

[16]  Y. Suris The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .

[17]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[18]  Anthony M. Bloch,et al.  A discrete maximum principle for solving optimal control problems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[19]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[20]  B. W. Jordan,et al.  Theory of a Class of Discrete Optimal Control Systems , 1964 .

[21]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .