Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases

[1]  C. Camilloni,et al.  The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells , 2017, Journal of fungi.

[2]  A. Beauvais,et al.  The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. , 2017, Annual review of microbiology.

[3]  J. Latgé,et al.  The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall , 2017, mBio.

[4]  A. Sanz,et al.  ‘Strengthening the fungal cell wall through chitin–glucan cross‐links: effects on morphogenesis and cell integrity’ , 2016, Cellular microbiology.

[5]  Hiroyuki Nakai,et al.  Functional and Structural Analysis of a β-Glucosidase Involved in β-1,2-Glucan Metabolism in Listeria innocua , 2016, PloS one.

[6]  N. Gow,et al.  Interactions of fungal pathogens with phagocytes , 2016, Nature Reviews Microbiology.

[7]  C. Nombela,et al.  Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases , 2015, The FEBS journal.

[8]  Marek S. Skrzypek,et al.  The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations , 2013, Nucleic Acids Res..

[9]  J. Arroyo,et al.  A novel fluorescence assay and catalytic properties of Crh1 and Crh2 yeast cell wall transglycosylases. , 2013, The Biochemical journal.

[10]  Enrico Cabib,et al.  How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall , 2013, Nature Reviews Microbiology.

[11]  J. Arroyo,et al.  Crosslinks in the cell wall of budding yeast control morphogenesis at the mother–bud neck , 2012, Journal of Cell Science.

[12]  S. Free,et al.  The Neurospora crassa dfg5 and dcw1 Genes Encode α-1,6-Mannanases That Function in the Incorporation of Glycoproteins into the Cell Wall , 2012, PloS one.

[13]  J. Latgé,et al.  Sensing of mammalian IL-17A regulates fungal adaptation and virulence , 2012, Nature Communications.

[14]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[15]  J. Latgé,et al.  Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. , 2011, Blood.

[16]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[17]  J. Latgé,et al.  β(1-3)Glucanosyltransferase Gel4p Is Essential for Aspergillus fumigatus , 2010, Eukaryotic Cell.

[18]  J. Latgé,et al.  Problems and hopes in the development of drugs targeting the fungal cell wall , 2010, Expert review of anti-infective therapy.

[19]  J. Latgé,et al.  Characterization of a New β(1–3)-Glucan Branching Activity of Aspergillus fumigatus , 2009, The Journal of Biological Chemistry.

[20]  E. Cabib Two Novel Techniques for Determination of Polysaccharide Cross-Links Show that Crh1p and Crh2p Attach Chitin to both β(1-6)- and β(1-3)Glucan in the Saccharomyces cerevisiae Cell Wall , 2009, Eukaryotic Cell.

[21]  J. Latgé,et al.  Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. , 2009, Future microbiology.

[22]  Ying Xu,et al.  Barcodes for genomes and applications , 2008, BMC Bioinformatics.

[23]  J. Arroyo,et al.  Assembly of the Yeast Cell Wall , 2008, Journal of Biological Chemistry.

[24]  J. Latgé,et al.  The GPI‐anchored Gas and Crh families are fungal antigens , 2007, Yeast.

[25]  J. Arroyo,et al.  Crh1p and Crh2p are required for the cross‐linking of chitin to β(1‐6)glucan in the Saccharomyces cerevisiae cell wall , 2007, Molecular microbiology.

[26]  C. D. de Koster,et al.  The CRH Family Coding for Cell Wall Glycosylphosphatidylinositol Proteins with a Predicted Transglycosidase Domain Affects Cell Wall Organization and Virulence of Candida albicans* , 2006, Journal of Biological Chemistry.

[27]  S. Free,et al.  The structure and synthesis of the fungal cell wall , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  Udo Heinemann,et al.  Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase. , 2006, Journal of molecular biology.

[29]  G. Goldman,et al.  The akuBKU80 Mutant Deficient for Nonhomologous End Joining Is a Powerful Tool for Analyzing Pathogenicity in Aspergillus fumigatus , 2006, Eukaryotic Cell.

[30]  A. Beauvais,et al.  Deletion of GEL2 encoding for a β(1–3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus , 2005, Molecular microbiology.

[31]  E. Cabib,et al.  Synthase III-dependent Chitin Is Bound to Different Acceptors Depending on Location on the Cell Wall of Budding Yeast*♦ , 2005, Journal of Biological Chemistry.

[32]  P. Briza,et al.  CRR1, a gene encoding a putative transglycosidase, is required for proper spore wall assembly in Saccharomyces cerevisiae. , 2004, Microbiology.

[33]  H. Brumer,et al.  Crystal Structures of a Poplar Xyloglucan Endotransglycosylase Reveal Details of Transglycosylation Acceptor Binding , 2004, The Plant Cell Online.

[34]  D. Kilburn,et al.  Structure and ligand binding of carbohydrate-binding module CsCBM6-3 reveals similarities with fucose-specific lectins and "galactose-binding" domains. , 2003, Journal of molecular biology.

[35]  Thierry Fontaine,et al.  Glycosylphosphatidylinositol-anchored Glucanosyltransferases Play an Active Role in the Biosynthesis of the Fungal Cell Wall* , 2000, The Journal of Biological Chemistry.

[36]  Javier Arroyo,et al.  A Novel Family of Cell Wall-Related Proteins Regulated Differently during the Yeast Life Cycle , 2000, Molecular and Cellular Biology.

[37]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[38]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[39]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[40]  C. d’Enfert Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker , 1996, Current Genetics.

[41]  J. Tkacz,et al.  The fungal cell wall as a drug target. , 1995, Trends in microbiology.

[42]  U. Heinemann,et al.  Crystal Structure and Site-directed Mutagenesis of Bacillus macerans Endo-1,31,4--glucanase (*) , 1995, The Journal of Biological Chemistry.

[43]  U. Heinemann,et al.  Molecular and active-site structure of a Bacillus 1,3-1,4-beta-glucanase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Gabriel,et al.  The influence of Congo red on the cell wall and (1 → 3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae , 1992, Archives of Microbiology.

[45]  P Jackson,et al.  The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. , 1990, The Biochemical journal.

[46]  C. Roberts,et al.  Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. , 1976, Journal of general microbiology.

[47]  J. Latgé 30 years of battling the cell wall. , 2017, Medical mycology.

[48]  A. Vasella,et al.  Glycosidase mechanisms. , 2002, Current opinion in chemical biology.

[49]  S. Withers,et al.  Glycosidase mechanisms. , 2000, Current opinion in chemical biology.