Mixed type multiple orthogonal polynomials associated with the modified Bessel functions and products of two coupled random matrices

We consider mixed type multiple orthogonal polynomials associated with a system of weight functions consisting of two vectors. One vector is defined in terms of scaled modified Bessel function of the first kind $I_\mu$ and $I_{\mu+1}$, the other vector is defined in terms of scaled modified Bessel function of the second kind $K_\nu$ and $K_{\nu+1}$. We show that the corresponding mixed type multiple orthogonal polynomials exist. For the special case that each multi-index is on or close to the diagonal, basic properties of the polynomials and their linear forms are investigated, which include explicit formulas, integral representations, differential properties, limiting forms and recurrence relations. It comes out that, for specified parameters, the linear forms of these mixed type multiple orthogonal polynomials can be interpreted as biorthogonal functions encountering in recent studies of products of two coupled random matrices. This particularly implies a Riemann-Hilbert characterization of the correlation kernel, which provides an alternative way for further asymptotic analysis.

[1]  Mourad E. H. Ismail,et al.  Special Functions, Stieltjes Transforms and Infinite Divisibility , 1979 .

[2]  Manuel Mañas,et al.  Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy , 2010, Advances in Mathematics.

[3]  J. Coussement,et al.  Asymptotic zero distribution for a class of multiple orthogonal polynomials , 2006 .

[4]  K. Splittorff,et al.  A new Chiral Two-Matrix Theory for Dirac Spectra with Imaginary Chemical Potential , 2006 .

[5]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[6]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[7]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[8]  W. Van Assche,et al.  Multiple orthogonal polynomials for classical weights , 2003 .

[9]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[10]  Steven Delvaux Average characteristic polynomials for multiple orthogonal polynomial ensembles , 2010, J. Approx. Theory.

[11]  Mourad E. H. Ismail,et al.  Bessel Functions and the Infinite Divisibility of the Student $t$- Distribution , 1977 .

[12]  Lun Zhang,et al.  Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits , 2013, 1308.1003.

[13]  A. Kuijlaars Multiple orthogonal polynomial ensembles , 2009, 0902.1058.

[14]  Lun Zhang,et al.  A note on the limiting mean distribution of singular values for products of two Wishart random matrices , 2013, 1305.0726.

[15]  Nico M. Temme Uniform asymptotic expansion for a class of polynomials biorthogonal on the unit circle , 1985 .

[16]  A. Aptekarev,et al.  Multiple orthogonal polynomials , 1998 .

[17]  W. Assche,et al.  Multiple Orthogonal Polynomials Associated with the Modified Bessel Functions of the First Kind , 2003 .

[18]  G. Akemann,et al.  Hard edge limit of the product of two strongly coupled random matrices , 2015, 1511.09410.

[19]  S. Yakubovich,et al.  Multiple orthogonal polynomials associated with macdonald functions , 2000, math/0101188.

[20]  M. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .

[21]  Steven Delvaux,et al.  Non-intersecting squared Bessel paths with one positive starting and ending point , 2011 .

[22]  K. Driver,et al.  Normality in Nikishin systems , 1994 .

[23]  Lun Zhang,et al.  The asymptotic zero distribution of multiple orthogonal polynomials associated with Macdonald functions , 2011, J. Approx. Theory.

[24]  Arno B. J. Kuijlaars,et al.  Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions , 2005, J. Approx. Theory.

[25]  J. Osborn Universal results from an alternate random-matrix model for QCD with a baryon chemical potential. , 2004, Physical review letters.

[26]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[27]  G. Lagomasino,et al.  Nikishin Systems Are Perfect , 2010, 1001.0554.

[28]  Arno B.J. Kuijlaars,et al.  Multiple orthogonal polynomials in random matrix theory , 2010, 1004.0846.

[29]  W. Assche,et al.  Some properties of multiple orthogonal polynomials associated with Macdonald functions , 2001 .

[30]  J. M. Ceniceros,et al.  Mixed type multiple orthogonal polynomials: Perfectness and interlacing properties of zeros , 2013 .

[32]  Arno B. J. Kuijlaars,et al.  Recurrence relations and vector equilibrium problems arising from a model of non-intersecting squared Bessel paths , 2010, J. Approx. Theory.

[33]  Alexei Borodin Biorthogonal ensembles , 1998 .

[34]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[35]  Y. Cheikh,et al.  On Two-Orthogonal Polynomials Related to the Bateman's J"uvn"_Function , 2000 .

[36]  U. Fidalgo Prieto,et al.  Nikishin systems are perfect. The case of unbounded and touching supports , 2010, J. Approx. Theory.

[37]  Emil Grosswald,et al.  The student t-distribution of any degree of freedom is infinitely divisible , 1976 .

[38]  Dang-Zheng Liu Singular Values for Products of Two Coupled Random Matrices: Hard Edge Phase Transition , 2016, 1602.00634.

[39]  Arno B. J. Kuijlaars,et al.  Asymptotics of non-intersecting Brownian motions and a 4×4 Riemann-Hilbert problem , 2008, J. Approx. Theory.

[40]  Leon M. Hall,et al.  Special Functions , 1998 .

[41]  G. Akemann,et al.  Dropping the Independence: Singular Values for Products of Two Coupled Random Matrices , 2015, 1504.02047.

[42]  A. Kuijlaars,et al.  Non-Intersecting Squared Bessel Paths and Multiple Orthogonal Polynomials for Modified Bessel Weights , 2007, 0712.1333.

[43]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[44]  P. Forrester,et al.  Singular Values of Products of Ginibre Random Matrices , 2016, 1605.00704.

[45]  A new chiral two-matrix theory for Dirac spectra with imaginary chemical potential , 2007 .

[46]  Walter Van Assche,et al.  Pade and Hermite-Pade approximation and orthogonality , 2006, math/0609094.

[47]  W. Assche,et al.  Asymptotics of multiple orthogonal polynomials associated with the modified Bessel functions of the first kind , 2003 .