Overview of refinement procedures within REFMAC5: utilizing data from different sources

Here, a macromolecule-centred approach to three-dimensional structure determination as implemented in REFMAC5 is considered. The use of restraints to transfer chemical and structural information during macromolecular refinement, and how different sources of information can be combined in order to achieve models that are more consistent with data derived from a variety of experimental techniques, including macromolecular crystallography, cryo-EM and NMR spectroscopy, are discussed.

[1]  T C Terwilliger,et al.  Bayesian difference refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[2]  Che Ma,et al.  Lanthanide ions bind specifically to an added "EF-hand" and orient a membrane protein in micelles for solution NMR spectroscopy. , 2000, Journal of magnetic resonance.

[3]  M. Jaskólski,et al.  Protein crystallography for non‐crystallographers, or how to get the best (but not more) from published macromolecular structures , 2008, The FEBS journal.

[4]  P. Keizers,et al.  Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. , 2007, Journal of the American Chemical Society.

[5]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[6]  G. Otting,et al.  A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[7]  Paul D Adams,et al.  Modelling dynamics in protein crystal structures by ensemble refinement , 2012, eLife.

[8]  G. Clore,et al.  How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? , 2004, Journal of the American Chemical Society.

[9]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[10]  M. Teplova,et al.  Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression , 2001, Nature Structural Biology.

[11]  Saulius Gražulis,et al.  AceDRG: a stereochemical description generator for ligands , 2017, Acta crystallographica. Section D, Structural biology.

[12]  J H Prestegard,et al.  Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Garib N. Murshudov,et al.  Automated refinement of macromolecular structures at low resolution using prior information , 2016, Acta crystallographica. Section D, Structural biology.

[14]  G. Bricogne [23] Bayesian statistical viewpoint on structure determination: Basic concepts and examples. , 1997, Methods in enzymology.

[15]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[18]  G N Murshudov,et al.  Refinement of Atomic Structures Against cryo-EM Maps. , 2016, Methods in enzymology.

[19]  E Blanc,et al.  Electronic Reprint Biological Crystallography Modelling Prior Distributions of Atoms for Macromolecular Refinement and Completion Roversi Et Al. ¯ Prior Distributions for Macromolecular Refinement and Completion , 2022 .

[20]  T. A. Jones,et al.  Crystallographic refinement of macromolecules having non-crystallographic symmetry , 1984 .

[21]  Jure Pražnikar,et al.  PURY: a database of geometric restraints of hetero compounds for refinement in complexes with macromolecular structures , 2008, Acta crystallographica. Section D, Biological crystallography.

[22]  Fei Long,et al.  Low-resolution refinement tools in REFMAC5 , 2012, Acta crystallographica. Section D, Biological crystallography.

[23]  Ivano Bertini,et al.  Magnetic susceptibility in paramagnetic NMR , 2002 .

[24]  Oliver F. Lange,et al.  Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution , 2008, Science.

[25]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[26]  K. Ogura,et al.  Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect , 2009, Journal of biomolecular NMR.

[27]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[28]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[29]  Gottfried Otting,et al.  Prospects for lanthanides in structural biology by NMR , 2008, Journal of biomolecular NMR.

[30]  M. Pinsky Introduction to Fourier analysis and wavelets , 2002 .

[31]  Pavol Skubák,et al.  Automatic protein structure solution from weak X-ray data , 2013, Nature Communications.

[32]  M. F. Perutz,et al.  Isomorphous replacement and phase determination in non‐centrosymmetric space groups , 1956 .

[33]  C. Luchinat,et al.  How to tackle protein structural data from solution and solid state: An integrated approach. , 2016, Progress in nuclear magnetic resonance spectroscopy.

[34]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[35]  F. Förster,et al.  Integration of cryo-EM with atomic and protein-protein interaction data. , 2010, Methods in enzymology.

[36]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[37]  Ad Bax,et al.  Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. , 2003, Journal of the American Chemical Society.

[38]  Michael Levitt,et al.  Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. , 2007, Structure.

[39]  P E Bourne,et al.  The Protein Data Bank. , 2002, Nucleic acids research.

[40]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[41]  Jens Meiler,et al.  Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[42]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[43]  Alexandre Urzhumtsev,et al.  On effective and optical resolutions of diffraction data sets. , 2013, Acta crystallographica. Section D, Biological crystallography.

[44]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[45]  M. DePristo,et al.  Simultaneous determination of protein structure and dynamics , 2005, Nature.

[46]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[47]  Gerhard Hummer,et al.  Bayesian ensemble refinement by replica simulations and reweighting. , 2015, The Journal of chemical physics.

[48]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[49]  Claudio Luchinat,et al.  Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences , 2014, Acta crystallographica. Section D, Biological crystallography.

[50]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[51]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[52]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[53]  A. Bax,et al.  Evaluation of uncertainty in alignment tensors obtained from dipolar couplings , 2002, Journal of biomolecular NMR.

[54]  F. Gebauer,et al.  Structural basis for the assembly of the Sxl–Unr translation regulatory complex , 2014, Nature.

[55]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[56]  C. Luchinat,et al.  Improved Accuracy from Joint X-ray and NMR Refinement of a Protein-RNA Complex Structure. , 2016, Journal of the American Chemical Society.

[57]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[58]  Alyson G. Wilson,et al.  Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis , 2016, Scientific Reports.

[59]  C. Sanders,et al.  Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. , 1995, Biochemistry.

[60]  Fei Long,et al.  The PDB_REDO server for macromolecular structure model optimization , 2014, IUCrJ.

[61]  A. Bax Weak alignment offers new NMR opportunities to study protein structure and dynamics , 2003, Protein science : a publication of the Protein Society.

[62]  A. Vagin,et al.  A translation-function approach for heavy-atom location in macromolecular crystallography. , 1998, Acta crystallographica. Section D, Biological crystallography.

[63]  G. Otting,et al.  NMR experiments for the sign determination of homonuclear scalar and residual dipolar couplings , 2000, Journal of biomolecular NMR.

[64]  Bayesian analysis of the evidence for minor components in crystallographic models: an alternative to the Hamilton R test. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[65]  B. Imperiali,et al.  Lanthanide‐Binding Tags as Versatile Protein Coexpression Probes , 2003, Chembiochem : a European journal of chemical biology.

[66]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[67]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[68]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[69]  Jochen S. Hub,et al.  Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics , 2017, PLoS Comput. Biol..

[70]  S. Grzesiek,et al.  DOTA-M8: An extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. , 2009, Journal of the American Chemical Society.

[71]  Paul D Adams,et al.  Electronic Reprint Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow ): a Tool for Ligand Coordinate and Restraint Generation Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow): a Tool for Ligand Coordinate and Restraint Gener , 2022 .

[72]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[73]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Garib N. Murshudov,et al.  Conformation-independent structural comparison of macromolecules with ProSMART , 2014, Acta crystallographica. Section D, Biological crystallography.

[75]  Wilma K. Olson,et al.  BPS: a database of RNA base-pair structures , 2008, Nucleic Acids Res..

[76]  S. McNicholas,et al.  Presenting your structures: the CCP4mg molecular-graphics software , 2011, Acta crystallographica. Section D, Biological crystallography.