Investigation of active materials as driving elements of a hydraulic hybrid actuator

In recent years, there have been growing applications of active materials, such as piezoelectrics and magnetostrictives, as actuators in the aerospace and automotive fields. Although these materials have high force and large bandwidth capabilities, their use has been limited due to their small stroke. The use of hydraulic amplification in conjunction with motion rectification is an effective way to overcome this problem and to develop a high force, large stroke actuator. In the hydraulic hybrid actuator concept, a hydraulic pump actuated by an active material is coupled to a conventional hydraulic cylinder, from which output work can be extracted. This actuation concept requires a high bandwidth active material with a moderate stroke. Both piezoelectrics, and magnetostrictives such as Terfenol-D and Galfenol are well suited as driving elements for this application, however, each material has its drawbacks. This paper presents a comparison of the performance of a piezoelectric, Terfenol-D and Galfenol element as the driving material in a hydraulic hybrid actuator. The performance of the actuator with each driving element is measured through systematic testing and the driving elements are compared based on input power required and actuator mass. For a pumping chamber of diameter 1” and a driving element of length 2”, the maximum output power was measured to be 2.5 W for the Terfenol-D hybrid actuator and 1.75 W for the piezoelectric hybrid actuator.

[1]  克信 小西,et al.  圧電素子を動力源とする油圧式アクチュエータに関する研究 : 第2報,油圧共振の活用による圧電ポンプ出力の増大 , 1994 .

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  Peter F. Lorber,et al.  Active Rotor Control (ARC) of a Mach-Scale Trailing Edge Flap Rotor , 2001 .

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  Christopher S. Lynch,et al.  Piezoelectric hydraulic pump performance , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  Jayant Sirohi Piezoelectric hydraulic hybrid actuator for a potential smart rotor application , 2002 .

[7]  Inderjit Chopra,et al.  Frequency domain modeling of a piezohydraulic actuator , 2003 .

[8]  Inderjit Chopra,et al.  Design and testing of a high-pumping-frequency piezoelectric-hydraulic hybrid actuator , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Alison B. Flatau,et al.  Blocked force investigation of a Terfenol-D transducer , 1999, Smart Structures.

[10]  John L. McCloud,et al.  A Numerical Simulation Study of Open‐Loop, Closed‐Loop and Adaptive Multicyclic Control Systems , 1983 .

[11]  Richard S. Teal,et al.  Higher Harmonic Control: Wind Tunnel Demonstration of Fully Effective Vibratory Hub Force Suppression , 1985 .

[12]  Alison B. Flatau,et al.  Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19 , 2002 .

[13]  Donald J. Leo,et al.  Efficiency of Frequency-Rectified Piezohydraulic and Piezopneumatic Actuation , 2000, Adaptive Structures and Material Systems.

[14]  Anirban Chaudhuri,et al.  Bidirectional control of a magnetorheological piezohydraulic actuator , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[15]  Christopher S. Lynch,et al.  Piezoelectric hydraulic pump development , 2000 .

[16]  Inderjit Chopra,et al.  Effects of higher harmonic control on rotor performance and control loads , 1992 .

[17]  Jayanth N. Kudva,et al.  Overview of the DARPA/AFRL/NASA Smart Wing Phase II program , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Inderjit Chopra,et al.  Application of Higher Harmonic Control to Rotors Operating at High Speed and Thrust , 1990 .

[19]  Toshiiku Sashida,et al.  An Introduction to Ultrasonic Motors , 1994 .

[20]  Bing Zhang,et al.  Performance Modeling of a Piezo-Hydraulic Actuator , 2003 .

[21]  Harley H. Cudney,et al.  Compact piezohydraulic actuation system , 2000, Smart Structures.

[22]  Andreas Paul Friedrich Bernhard Smart helicopter rotor with active blade tips , 2000 .

[23]  James H. Goldie,et al.  Magnetostrictive water pump , 1998, Smart Structures.

[24]  Khanh Duong,et al.  Design and Performance of a Rotary Motor Driven by Piezoelectric Stack Actuators , 1996 .

[25]  Harley H. Cudney,et al.  Modeling and testing of a piezohydraulic actuation system , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[26]  小西 克信,et al.  圧電素子を動力源とする油圧式アクチュエータに関する研究 : 第3報, 圧電ポンプと油圧シリンダによる位置制御実験 , 1995 .

[27]  Keith Bridger,et al.  High-pressure magnetostrictive pump development: a comparison of prototype and modeled performance , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  Inderjit Chopra,et al.  Wind Tunnel Test of a Smart Rotor Model with Individual Blade Twist Control , 1997 .

[29]  Khalil Maurice Nasser Development and Analysis of the Lumped Parameter Model of a Piezo-Hydraulic Actuator , 2000 .

[30]  Christopher S. Lynch,et al.  Piezoelectric hydraulic pump , 1999, Smart Structures.

[31]  克信 小西,et al.  圧電素子を動力源とする油圧式アクチュエータに関する研究 : 第1報,圧電ポンプの試作とその最大出力の検討 , 1993 .

[32]  P. R. Payne Higher Harmonic Rotor Control , 1958 .

[33]  C. E. Hammond,et al.  Wind Tunnel Results Showing Rotor Vibratory Loads Reduction Using Higher Harmonic Blade Pitch , 1980 .

[34]  Inderjit Chopra,et al.  Design and Development of a High Pumping Frequency Piezoelectric-Hydraulic Hybrid Actuator , 2003 .

[35]  Eric H. Anderson,et al.  SMART MATERIAL ACTUATOR WITH LONG STROKE AND HIGH POWER OUTPUT , 2002 .

[36]  Jinsong Bao,et al.  Development of Mach Scale Rotors with Composite Tailored Couplings for Vibration Reduction , 2004 .

[37]  Inderjit Chopra,et al.  Review of State of Art of Smart Structures and Integrated Systems , 2002 .

[38]  克信 小西,et al.  圧電素子を動力源とする油圧式アクチュエータに関する研究 : 第4報, シミュレーションモデルの作成 , 1997 .

[39]  Gary H. Koopmann,et al.  Design, Modeling, and Performance of a High Force Piezoelectric Inchworm Motor , 1999 .

[40]  Raymond W. Prouty,et al.  Helicopter performance, stability, and control , 1986 .

[41]  Inderjit Chopra,et al.  A Parametric Design Study for Actively Controlled Trailing Edge Flaps , 1998 .

[42]  Inderjit Chopra,et al.  Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.