Robust fitting of parallax-aware mixtures for path guiding

Effective local light transport guiding demands for high quality guiding information, i.e., a precise representation of the directional incident radiance distribution at every point inside the scene. We introduce a parallax-aware distribution model based on parametric mixtures. By parallax-aware warping of the distribution, the local approximation of the 5D radiance field remains valid and precise across large spatial regions, even for close-by contributors. Our robust optimization scheme fits parametric mixtures to radiance samples collected in previous rendering passes. Robustness is achieved by splitting and merging of components refining the mixture. These splitting and merging decisions minimize and bound the expected variance of the local radiance estimator. In addition, we extend the fitting scheme to a robust, iterative update method, which allows for incremental training of our model using smaller sample batches. This results in more frequent training updates and, at the same time, significantly reduces the required sample memory footprint. The parametric representation of our model allows for the application of advanced importance sampling methods such as radiance-based, cosine-aware, and even product importance sampling. Our method further smoothly integrates next-event estimation (NEE) into path guiding, avoiding importance sampling of contributions better covered by NEE. The proposed robust fitting and update scheme, in combination with the parallax-aware representation, results in faster learning and lower variance compared to state-of-the-art path guiding approaches.

[1]  Justin Talbot,et al.  Energy redistribution path tracing , 2005, ACM Trans. Graph..

[2]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[3]  Jaroslav Krivánek,et al.  Adjoint-driven Russian roulette and splitting in light transport simulation , 2016, ACM Trans. Graph..

[4]  M. Piccioni,et al.  Selection of importance weights for Monte Carlo estimation of normalizing constants , 1999 .

[5]  Richard F Murray,et al.  Cue combination on the circle and the sphere. , 2010, Journal of vision.

[6]  Diego Gutierrez,et al.  Second-Order Occlusion-Aware Volumetric Radiance Caching , 2018, ACM Trans. Graph..

[7]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[8]  Henrik Wann Jensen,et al.  Importance Driven Path Tracing using the Photon Map , 1995, Rendering Techniques.

[9]  Thomas Müller,et al.  Neural Importance Sampling , 2018, ACM Trans. Graph..

[10]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[11]  Martin Šik,et al.  Implementing One-Click Caustics in Corona Renderer , 2019, EGSR.

[12]  Tobias Ritschel,et al.  On-line learning of parametric mixture models for light transport simulation , 2014, ACM Trans. Graph..

[13]  H. Akaike A new look at the statistical model identification , 1974 .

[14]  Hendrik P. A. Lensch,et al.  Product Importance Sampling for Light Transport Path Guiding , 2016, Comput. Graph. Forum.

[15]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[16]  Luca Fascione,et al.  Path tracing in production - part 1: production renderers , 2017, SIGGRAPH Courses.

[17]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[18]  Geoffrey E. Hinton,et al.  SMEM Algorithm for Mixture Models , 1998, Neural Computation.

[19]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[20]  J. Zára,et al.  Making radiance and irradiance caching practical: adaptive caching and neighbor clamping , 2006, EGSR '06.

[21]  Yves D. Willems,et al.  A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing , 1995, Rendering Techniques.

[22]  Derek Nowrouzezahrai,et al.  Volume Path Guiding Based on Zero-Variance Random Walk Theory , 2019, ACM Trans. Graph..

[23]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[24]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[25]  Geoffrey E. Hinton,et al.  Split and Merge EM Algorithm for Improving Gaussian Mixture Density Estimates , 2000, J. VLSI Signal Process..

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Bin Luo,et al.  Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm , 2004, Pattern Recognit. Lett..

[28]  Irwin Guttman,et al.  Theoretical considerations of the multivariate von Mises-Fisher distribution , 1988 .

[29]  Sumanta N. Pattanaik,et al.  Improved radiance gradient computation , 2005, SCCG '05.

[30]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[31]  Backward Ray Tracing Backward Ray Tracing , 1986 .

[32]  Thomas Bashford-Rogers,et al.  A Significance Cache for Accelerating Global Illumination , 2012, Comput. Graph. Forum.

[33]  Ingo Wald,et al.  Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media , 2008, Comput. Graph. Forum.

[34]  J. Hannay,et al.  Fibonacci numerical integration on a sphere , 2004 .

[35]  Toshiya Hachisuka,et al.  Stochastic progressive photon mapping , 2009, ACM Trans. Graph..

[36]  Tamy Boubekeur,et al.  Double Hierarchies for Directional Importance Sampling in Monte Carlo Rendering , 2017 .

[37]  Alexander Keller,et al.  Learning light transport the reinforced way , 2016, SIGGRAPH Talks.

[38]  Anton Kaplanyan,et al.  The natural-constraint representation of the path space for efficient light transport simulation , 2014, ACM Trans. Graph..

[39]  O. Cappé,et al.  On‐line expectation–maximization algorithm for latent data models , 2009 .

[40]  Carsten Dachsbacher,et al.  Selective guided sampling with complete light transport paths , 2018, ACM Trans. Graph..

[41]  Luca Fascione,et al.  Path tracing in production , 2018, SIGGRAPH Courses.

[42]  Sumanta N. Pattanaik,et al.  Radiance caching for efficient global illumination computation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[43]  Yoav Zemel,et al.  Annual Review of Statistics and Its Application Statistical Aspects of Wasserstein Distances , 2019 .

[44]  Luca Fascione,et al.  Path tracing in production: part 1: modern path tracing , 2019, SIGGRAPH Courses.

[45]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[46]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[47]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[48]  Matthias Zwicker,et al.  Learning to Importance Sample in Primary Sample Space , 2018, Comput. Graph. Forum.

[49]  Philipp Slusallek,et al.  Efficient Caustic Rendering with Lightweight Photon Mapping , 2018, Comput. Graph. Forum.

[50]  Paul S. Heckbert,et al.  Irradiance gradients , 2008, SIGGRAPH '08.

[51]  Thomas Müller,et al.  Path guiding in production , 2019, SIGGRAPH Courses.

[52]  Philipp Hennig,et al.  Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy , 2010, 2010 Ninth International Conference on Machine Learning and Applications.

[53]  Werner Purgathofer,et al.  Importance sampling with hemispherical particle footprints , 2002, SCCG '02.

[54]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[55]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[56]  Markus H. Gross,et al.  Practical Path Guiding for Efficient Light‐Transport Simulation , 2017, Comput. Graph. Forum.

[57]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[58]  Jerry Jinfeng Guo,et al.  Primary Sample Space Path Guiding , 2018, EGSR.

[59]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[60]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[61]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[62]  Eric P. Lafortune,et al.  Monte Carlo light tracing with direct computation of pixel intensities , 1993 .

[63]  Yoan Miche,et al.  Mixture Models and EM , 2007 .

[64]  Nikos A. Vlassis,et al.  Accelerated EM-based clustering of large data sets , 2006, Data Mining and Knowledge Discovery.

[65]  Henrik Wann Jensen,et al.  Practical Hessian-based error control for irradiance caching , 2012, ACM Trans. Graph..

[66]  Wenzel Jakob,et al.  Progressive Expectation‐Maximization for Hierarchical Volumetric Photon Mapping , 2011, EGSR '11.