GWIPS-viz: development of a ribo-seq genome browser

We describe the development of GWIPS-viz (http://gwips.ucc.ie), an online genome browser for viewing ribosome profiling data. Ribosome profiling (ribo-seq) is a recently developed technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome-protected messenger RNA (mRNA) fragments, which allows the ribosome density along all mRNA transcripts present in the cell to be quantified. Since its inception, ribo-seq has been carried out in a number of eukaryotic and prokaryotic organisms. Owing to the increasing interest in ribo-seq, there is a pertinent demand for a dedicated ribo-seq genome browser. GWIPS-viz is based on The University of California Santa Cruz (UCSC) Genome Browser. Ribo-seq tracks, coupled with mRNA-seq tracks, are currently available for several genomes: human, mouse, zebrafish, nematode, yeast, bacteria (Escherichia coli K12, Bacillus subtilis), human cytomegalovirus and bacteriophage lambda. Our objective is to continue incorporating published ribo-seq data sets so that the wider community can readily view ribosome profiling information from multiple studies without the need to carry out computational processing.

[1]  Jeffrey W. Roberts,et al.  High-resolution view of bacteriophage lambda gene expression by ribosome profiling , 2013, Proceedings of the National Academy of Sciences.

[2]  Audrey M. Michel,et al.  Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale , 2013, Wiley interdisciplinary reviews. RNA.

[3]  Ran Elkon,et al.  p53 induces transcriptional and translational programs to suppress cell proliferation and growth , 2013, Genome Biology.

[4]  C. Burge,et al.  Widespread regulation of translation by elongation pausing in heat shock , 2013, Molecular cell.

[5]  Shu-Bing Qian,et al.  Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. , 2013, Molecular cell.

[6]  Laurent Gil,et al.  Ensembl 2013 , 2012, Nucleic Acids Res..

[7]  Marco Y. Hein,et al.  Decoding Human Cytomegalovirus , 2012, Science.

[8]  Audrey M. Michel,et al.  Observation of dually decoded regions of the human genome using ribosome profiling data , 2012, Genome research.

[9]  K. Huse,et al.  Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting , 2012, Genome research.

[10]  V. Gladyshev,et al.  Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress , 2012, Proceedings of the National Academy of Sciences.

[11]  B. Shen,et al.  Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution , 2012, Proceedings of the National Academy of Sciences.

[12]  James Taylor,et al.  Next-generation sequencing data interpretation: enhancing reproducibility and accessibility , 2012, Nature Reviews Genetics.

[13]  A. Fire,et al.  Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targets , 2012, Genome research.

[14]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[15]  D. Sabatini,et al.  A unifying model for mTORC1-mediated regulation of mRNA translation , 2012, Nature.

[16]  Gene-Wei Li,et al.  The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria , 2012, Nature.

[17]  Nicholas T. Ingolia,et al.  The translational landscape of mTOR signalling steers cancer initiation and metastasis , 2012, Nature.

[18]  Jane Loveland,et al.  Tracking and coordinating an international curation effort for the CCDS Project , 2012, Database J. Biol. Databases Curation.

[19]  David W. Reid,et al.  Primary Role for Endoplasmic Reticulum-bound Ribosomes in Cellular Translation Identified by Ribosome Profiling* , 2011, The Journal of Biological Chemistry.

[20]  R. Weiss,et al.  Translation Goes Global , 2011, Science.

[21]  J. Weissman,et al.  Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo , 2011, Cell.

[22]  Nicholas T. Ingolia,et al.  High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling , 2011, Science.

[23]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[24]  Eurie L. Hong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[25]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..

[26]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[27]  A. Fire,et al.  Wobble base-pairing slows in vivo translation elongation in metazoans. , 2011, RNA.

[28]  Brian P. Brunk,et al.  Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM) , 2011, Bioinform..

[29]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[30]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[31]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[32]  Hideaki Sugawara,et al.  Archiving next generation sequencing data , 2009, Nucleic Acids Res..

[33]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[34]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[35]  Patricia P. Chan,et al.  GtRNAdb: a database of transfer RNA genes detected in genomic sequence , 2008, Nucleic Acids Res..

[36]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[37]  R. Gesteland,et al.  Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%1 , 1997, Journal of Molecular Biology.

[38]  A Kornberg,et al.  Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[40]  David L. Wheeler,et al.  GenBank: update , 2004, Nucleic Acids Res..