Towards VE that are More Closely Related to the Real World

This chapter provides an overview of the current state of augmented reality (AR). It examines the questions of pose computation, which could be used to locate a user in an immersive room or to model the real world, interactions in AR, and the concept of presence in environments that combine real and virtual elements. The chapter describes important innovations in the field of 3D interaction over the last decade. While 3D interaction is less central to AR, its importance is rising nonetheless. From simple applications to visualize digital data that is superimposed on the natural view, RA systems today are offering users increasingly more refined interaction systems in order to enhance usage. The chapter overviews recent developments allowing users to easily and efficiently interact with 3D content displayed on tactile surfaces. In the current interfaces, a trend towards an integration of the interaction styles can be observed.

[1]  Holger Regenbrecht,et al.  Embodied Presence in Virtual Environments , 1999, Visual Representations and Interpretations.

[2]  Ross T. Smith,et al.  Spatial User Interfaces for Large-Scale Projector-Based Augmented Reality , 2014, IEEE Computer Graphics and Applications.

[3]  Oliver Bimber Modern approaches to augmented reality: introduction to current approaches , 2006, SIGGRAPH Courses.

[4]  Andrew D. Wilson,et al.  IllumiRoom: peripheral projected illusions for interactive experiences , 2013, CHI Extended Abstracts.

[5]  Eyal Ofek,et al.  Room2Room: Enabling Life-Size Telepresence in a Projected Augmented Reality Environment , 2016, CSCW.

[6]  Matthew Lombard,et al.  At the Heart of It All: The Concept of Presence , 2006 .

[7]  Frank Biocca,et al.  Comparing Differences in Presence during Social Interaction in Augmented Reality versus Virtual Reality Environments: An Exploratory Study , 2004 .

[8]  Martin Hachet,et al.  Navidget for 3D interaction: Camera positioning and further uses , 2009, Int. J. Hum. Comput. Stud..

[9]  Martin Hachet,et al.  Combining multi-touch input and device movement for 3D manipulations in mobile augmented reality environments , 2014, SUI.

[10]  Tony DeRose,et al.  Eden: a professional multitouch tool for constructing virtual organic environments , 2011, CHI.

[11]  Martin Hachet,et al.  tBox: a 3d transformation widget designed for touch-screens , 2011, CHI.

[12]  J. M. Christian Bastien,et al.  Marker-based augmented reality: instructional-design to improve children interactions with astronomical concepts , 2015, IDC.

[13]  Blair MacIntyre,et al.  RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units , 2014, UIST.

[14]  Hiroshi Ishii,et al.  Radical atoms: beyond tangible bits, toward transformable materials , 2012, INTR.

[15]  Torsten Sattler,et al.  Camera Pose Voting for Large-Scale Image-Based Localization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  Andrew Wilson,et al.  MirageTable: freehand interaction on a projected augmented reality tabletop , 2012, CHI.

[17]  Ben Shneiderman,et al.  Direct manipulation vs. interface agents , 1997, INTR.

[18]  Holger Regenbrecht,et al.  The Experience of Presence: Factor Analytic Insights , 2001, Presence: Teleoperators & Virtual Environments.

[19]  Roel Vertegaal,et al.  BitDrones: Towards Levitating Programmable Matter Using Interactive 3D Quadcopter Displays , 2015, UIST.

[20]  Martin Hachet,et al.  Tangible Viewports: Getting Out of Flatland in Desktop Environments , 2016, TEI.

[21]  Philip L. Davidson,et al.  A screen-space formulation for 2D and 3D direct manipulation , 2009, UIST '09.

[22]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[23]  Jérémy Frey,et al.  Teegi: tangible EEG interface , 2014, UIST.

[24]  Hiroshi Ishii,et al.  inFORM: dynamic physical affordances and constraints through shape and object actuation , 2013, UIST.

[25]  Hrvoje Benko,et al.  Dyadic projected spatial augmented reality , 2014, UIST.

[26]  Ryugo Kijima,et al.  Transition between virtual environment and workstation environment with projective head mounted display , 1997, Proceedings of IEEE 1997 Annual International Symposium on Virtual Reality.

[27]  Martin Hachet,et al.  Advances in Interaction with 3D Environments , 2015, Comput. Graph. Forum.

[28]  Steven K. Feiner,et al.  Opportunistic controls: leveraging natural affordances as tangible user interfaces for augmented reality , 2008, VRST '08.

[29]  Joaquim A. Jorge,et al.  Mockup builder: direct 3D modeling on and above the surface in a continuous interaction space , 2012, Graphics Interface.

[30]  Chris Harrison,et al.  OmniTouch: wearable multitouch interaction everywhere , 2011, UIST.

[31]  Jianliang Tang,et al.  Complete Solution Classification for the Perspective-Three-Point Problem , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  M. Sheelagh T. Carpendale,et al.  Sticky tools: full 6DOF force-based interaction for multi-touch tables , 2009, ITS '09.

[33]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[34]  Carrie Heeter,et al.  Being There: The Subjective Experience of Presence , 1992, Presence: Teleoperators & Virtual Environments.

[35]  Eyal Ofek,et al.  FoveAR: Combining an Optically See-Through Near-Eye Display with Projector-Based Spatial Augmented Reality , 2015, UIST.

[36]  David Kim,et al.  HoloDesk: direct 3d interactions with a situated see-through display , 2012, CHI.

[37]  Martin Hachet,et al.  Toucheo: multitouch and stereo combined in a seamless workspace , 2011, UIST.

[38]  Tobias Isenberg,et al.  A Design Study of Direct‐Touch Interaction for Exploratory 3D Scientific Visualization , 2012, Comput. Graph. Forum.

[39]  John C. Hart,et al.  The CAVE: audio visual experience automatic virtual environment , 1992, CACM.

[40]  Tobias Isenberg,et al.  A Tangible Volume for Portable 3D Interaction , 2016, 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct).

[41]  Masahiko Inami,et al.  Optical camouflage using retro-reflective projection technology , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[42]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[43]  Laurent Grisoni,et al.  The effect of DOF separation in 3D manipulation tasks with multi-touch displays , 2010, VRST '10.

[44]  Masahiko Inami,et al.  Visuo-haptic display using head-mounted projector , 2000, Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048).

[45]  Olivier Nannipieri,et al.  L’expérience immersive créée par un jeu promotionnel en réalité augmentée destiné aux enfants , 2016 .

[46]  Henry Fuchs,et al.  Comparison of optical and video see-through, head-mounted displays , 1995, Other Conferences.

[47]  Vincent Lepetit,et al.  TILDE: A Temporally Invariant Learned DEtector , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Didier Stricker,et al.  Adaptable Model-Based Tracking Using Analysis-by-Synthesis Techniques , 2007, CAIP.