Validation of data fusion as a method for forecasting the regeneration workload for complex capital goods

The regeneration of complex capital goods is afflicted with a high degree of uncertainty. Neither the extent of the damage to the goods nor the resulting maintenance workload is known in advance, and that poses challenges for capacity planning. Data fusion in the form of Bayesian networks is used to prepare forecasts in order to estimate the workload in maintenance processes. The objective is to optimize the planability of the capacities required.

[1]  Vilém Novák,et al.  Fuzzy Logic: What, Why, for Which? , 1999 .

[2]  Amir Saman Kheirkhah,et al.  Fuzzy logic in manufacturing: A review of literature and a specialized application , 2011 .

[3]  G. Schuh,et al.  TPM – eine Basis für die wertorientierte Instandhaltung , 2009 .

[4]  Michael M. Richter Fallbasiertes Schließen , 2003, Handbuch der Künstlichen Intelligenz.

[5]  Ricardo Büttner Automatisierte Verhandlungen in Multi-Agenten-Systemen , 2011 .

[6]  Andy Chan,et al.  Bayesian networks in manufacturing , 2011 .

[7]  John S. Morris,et al.  Top-down versus bottom-up forecasting strategies , 1988 .

[8]  J.J. Hopfield,et al.  Artificial neural networks , 1988, IEEE Circuits and Devices Magazine.

[9]  P. Nyhuis,et al.  Information Fusion as a Means of Forecasting Expenditures for Regenerating Complex Investment Goods , 2012 .

[10]  Marco Macchi,et al.  Recent advances in maintenance and facility management , 2008 .

[11]  Adnan Darwiche What are Bayesian networks and why are their applications growing across all fields? , 2010 .

[12]  Günther Görz,et al.  Handbuch der Künstlichen Intelligenz, 4. Auflage , 2003, Handbuch der Künstlichen Intelligenz.

[13]  John M. Noble,et al.  Bayesian Networks: An Introduction , 2009 .

[14]  Editors-in-chief,et al.  Encyclopedia of statistics in behavioral science , 2005 .

[15]  V. Novák,et al.  Mathematical Principles of Fuzzy Logic , 1999 .

[16]  Curt Freund Die Instandhaltung im Wandel , 2010 .

[17]  Adnan Darwiche Bayesian networks , 2010, Commun. ACM.

[18]  Analía Amandi,et al.  Intelligent User Profiling , 2009, Artificial Intelligence: An International Perspective.

[19]  Kenneth B. Kahn Revisiting Top-Down versus Bottom-Up Forecasting , 1998 .

[20]  Daniel Graupe,et al.  Principles of Artificial Neural Networks , 2018, Advanced Series in Circuits and Systems.

[21]  David Heckerman,et al.  Bayesian Networks for Data Mining , 2004, Data Mining and Knowledge Discovery.

[22]  Rajendra Akerkar Introduction to Artificial Intelligence , 2005 .

[23]  Christoph Beierle,et al.  Methoden wissensbasierter Systeme - Grundlagen, Algorithmen, Anwendungen , 2000, International Conference on Climate Informatics.

[24]  R. Guide,et al.  Rough-cut capacity planning for remanufacturing firms , 1997 .

[25]  D. Stangl,et al.  Encyclopedia of Statistics in Behavioral Science , 2008 .

[26]  L. D. Xu Case based reasoning , 1995 .

[27]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[28]  M. Wagner Modellbasierte Arbeitskräfteplanung für stochastische Instandhaltungsereignisse in der zivilen Luftfahrt , 2009 .

[29]  Max Bramer,et al.  Artificial Intelligence: An International Perspective , 2009, Artificial Intelligence: An International Perspective.

[30]  Patrick Henry Winston,et al.  Artificial intelligence (3rd ed.) , 1992 .

[31]  Stephan Staudacher,et al.  Systematic simulation based approach for the identification and implementation of a scheduling rule in the aircraft engine maintenance , 2014 .