H-mode confinement of Heliotron J

The L–H transition in a helical-axis heliotron, Heliotron J, is investigated. For electron cyclotron heating (ECH), neutral beam injection (NBI) heating and ECH + NBI combination heating plasmas, the confinement quality of the H-mode is examined with an emphasis on its magnetic configuration dependence. The vacuum edge rotational transform, ι(a)/2π, is chosen as a label for the magnetic configuration where ι/2π is the rotational transform and a is the average plasma minor radius in metres. The experimental ι(a)/2π dependence of the enhancement factor over the L-mode confinement reveals that specific configurations exist where high-quality H-modes (1.3 < HISS95 < 1.8) are attained. is the experimental global energy confinement time and is the confinement time scaling from the international stellarator database given as . R is the plasma major radius in metres, is the line-averaged plasma density in 1019 m−3, PL is the power loss in megawatts that accounts for the time derivative of the total plasma energy content and Bt is the toroidal magnetic field strength in tesla (Stroth U. et al 1996 Nucl. Fusion 36 1063). The ι (a)/2π ranges for these configurations are near values that are slightly less than those of the major natural resonances of Heliotron J, i.e. n/m = 4/8, 4/7 and 12/22. To better understand this configuration dependence, the geometrical poloidal viscous damping rate coefficient, Cp, is calculated for different values of ι(a)/2π and compared with the experimental results. The threshold line-averaged density of the H-mode, which depends on the configuration, is in the region of 0.7–2.0 × 1019 m−3 in ECH (0.29 MW) + NBI (0.57 MW) operation. As for the edge plasma characteristics, Langmuir probe measurements have shown a reduced fluctuation-induced transport in the region that begins inside the last closed flux surface (LCFS) and extends into the scrape-off layer. In addition, a negative radial electric field Er (or Er-shear) is simultaneously formed near the LCFS at the transition.

[1]  Y. Kamada,et al.  Growth of the edge pedestal in JT-60U ELMy H-mode , 1999 .

[2]  K. Kawahata,et al.  Formation of electron internal transport barriers by highly localized electron cyclotron resonance heating in the large helical device , 2003 .

[3]  Hong,et al.  Observation of an improved energy-confinement regime in neutral-beam-heated divertor discharges in the DIII-D tokamak. , 1987, Physical review letters.

[4]  H. R. Wilson,et al.  REVIEW ARTICLE: A review of theories of the L-H transition , 2000 .

[5]  R. Bell,et al.  Turbulent edge transport in the Princeton Beta Experiment‐Modified high confinement mode , 1994 .

[6]  M. Iriguchi,et al.  A 70-GHz Electron Cyclotron Resonance Heating System for Heliotron J , 2004 .

[7]  K. Kawahata,et al.  Observation of the low to high confinement transition in the large helical device , 2005 .

[8]  F. Castejón,et al.  Influence of low-order rational magnetic surfaces on heat transport in TJ-II heliac ECRH plasmas , 2004 .

[9]  Yi. Liu,et al.  First plasmas in Heliotron J , 2001 .

[10]  Sharp,et al.  Improved Particle Confinement Mode in the H-1 Heliac Plasma. , 1996, Physical review letters.

[11]  K. Shaing,et al.  L-H transition in tokamaks and stellarators , 1994 .

[12]  L. Giannone,et al.  Operational conditions and characteristics of ELM-events during H-mode plasmas in the stellarator W7-AS , 2000 .

[13]  V. Erckmann,et al.  H-mode of W7-AS stellarator , 1994 .

[14]  F. Wagner,et al.  Experimental evidence for neoclassical ion transport effects in the H-transition of ASDEX , 1985 .

[15]  A. López-Fraguas,et al.  Experimental evidence of fluctuation-induced inward transport linked to rational surfaces in the TJ-II stellarator , 2001 .

[16]  R. J. Groebner,et al.  Scaling studies of the high mode pedestal , 1998 .

[17]  Hasegawa,et al.  Self-organization of electrostatic turbulence in a cylindrical plasma. , 1987, Physical review letters.

[18]  E. C. Crume,et al.  A model for the L-H transition in tokamaks , 1990 .

[19]  Adil Hassam,et al.  Three‐dimensional fluid simulations of the nonlinear drift‐resistive ballooning modes in tokamak edge plasmas , 1993 .

[20]  Schmitz,et al.  Steady-state convection and fluctuation-driven particle transport in the H-mode transition. , 1992, Physical review letters.

[21]  F. P. Penningsfeld,et al.  Resonant superbanana and resonant banana losses of injected fast ions in Heliotron E and Wendelstein VII-A: effects of the radial electric field , 1992 .

[22]  A. Shimizu,et al.  Transition of Edge Particle Transport in CHS , 2003 .

[23]  P. Devynck,et al.  Shear effect on the radial profile of fluctuations measured by a reciprocating Langmuir probe in Tore Supra , 2000 .

[24]  Wootton,et al.  Evidence for confinement improvement by velocity-shear suppression of edge turbulence. , 1990, Physical review letters.

[25]  T. Osborne,et al.  The back transition and hysteresis effects in DIII-D , 1997 .

[26]  Lao,et al.  Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.

[27]  V. Rozhansky,et al.  The effect of the radial electric field on the L–H transitions in tokamaks , 1992 .

[28]  P. Diamond,et al.  Dynamics of second-order phase transitions in resistive pressure-gradient- driven turbulence , 1995 .

[29]  Koji Takahashi,et al.  Observation of H-Mode Operation Windows for ECH Plasmas in Heliotron J , 2004 .

[30]  Edge fluctuation studies in Heliotron J , 2005 .

[31]  T. Fujita,et al.  High performance experiments in JT-60U reversed shear discharges , 1999 .

[32]  L. Lao,et al.  Plasma shaping, edge ballooning stability and ELM behaviour in DIII-D , 1990 .

[33]  A. Fujisawa TOPICAL REVIEW: Experimental studies of structural bifurcation in stellarator plasmas , 2003 .

[34]  A. Hassam,et al.  Formation of the shear layer in toroidal edge plasma , 1993 .

[35]  J. Manickam,et al.  Disappearance of giant ELMs and appearance of minute grassy ELMs in JT-60U high-triangularity discharges , 2000 .

[36]  Lao,et al.  Regime of very high confinement in the boronized DIII-D tokamak. , 1991, Physical review letters.

[37]  H. Shidara,et al.  Ray Tracing Calculation of ECRH Power Absorption for Heliotron J. , 2002 .

[38]  E. de la Luna,et al.  Edge-localized-mode-like events in the TJ-II stellarator , 2000 .

[39]  MHD equilibrium and pressure driven instability in L = 1 heliotron plasmas , 2004 .

[40]  L. Lao,et al.  Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak , 2001 .

[41]  Tsuji,et al.  Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high- beta p discharges. , 1994, Physical review letters.

[42]  F. Sardei,et al.  Core-edge studies with boundary island configurations on the W7-AS stellarator , 1999 .

[43]  T. Rhodes,et al.  Study of the phase transition dynamics of the L to H transition , 1997 .

[44]  U. Stroth,et al.  Internal transport barrier triggered by neoclassical transport in W7-AS. , 2001, Physical review letters.

[45]  G. M. Staebler,et al.  Particle and energy confinement bifurcation in tokamaks , 1993 .

[46]  W. A. Peebles,et al.  Modifications in turbulence and edge electric fields at the L–H transition in the DIII‐D tokamak , 1991 .

[47]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[48]  R. A. Dory,et al.  SPECIAL TOPIC: Energy confinement scaling from the international stellarator database , 1995 .

[49]  E. D. Fredrickson,et al.  Improved confinement with reversed magnetic shear in TFTR. , 1995 .

[50]  K. L. Sidikman,et al.  Bifurcations and modulational interaction in negative compressibility turbulence , 1994 .

[51]  E. C. Crume,et al.  Bifurcation theory of poloidal rotation in tokamaks: A model for L-H transition. , 1989, Physical review letters.

[52]  F. Hinton Thermal confinement bifurcation and the L‐ to H‐mode transition in tokamaks , 1991 .

[53]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[54]  S. Lebedev,et al.  LETTER: Radial current in a tokamak caused by a biased electrode , 1992 .

[55]  M. Iriguchi,et al.  Confinement characteristics of ECH plasmas in Heliotron J , 2002 .

[56]  H. Sanuki,et al.  DYNAMIC BEHAVIOR OF POTENTIAL IN THE PLASMA CORE OF THE CHS HELIOTRON/TORSATRON , 1997 .

[57]  G. Staebler,et al.  Quiescent double barrier regime in the DIII-D tokamak. , 2001, Physical review letters.

[58]  Yuji Nakamura,et al.  Plasma Confinement Characteristics in Heliotron J—Spontaneous Change of Plasma Confinement State , 2004 .

[59]  P. Diamond,et al.  Dynamics of low to high (‘‘L’’ to ‘‘H’’) confinement bifurcation: Poloidal flow and ion pressure gradient evolution , 1994 .

[60]  Y. Hamada,et al.  Observation of the fast potential change at L-H transition by a heavy-ion-beam probe on JFT-2M. , 2002, Physical review letters.

[61]  Jet Team Towards steady state tokamak operation with double transport barriers , 1999 .

[62]  E. Doyle,et al.  Slow L-H transitions in DIII-D plasmas. , 2002, Physical review letters.

[63]  A. Shimizu,et al.  Observation of inward turbulent particle transport in edge plasma region of CHS heliotron/torsatron , 2002 .

[64]  Geist,et al.  H mode of the W 7-AS stellarator. , 1993, Physical review letters.

[65]  J. R. Cepero,et al.  Review of confinement and transport studies in the TJ-II flexible heliac , 2001 .

[66]  N. H. Brooks,et al.  Physics of slow L-H transitions in the DIII-D tokamak , 2002 .

[67]  A. Hassam,et al.  Spontaneous poloidal spin-up of tokamak plasmas: Reduced equations, physical mechanism, and sonic regimes , 1993 .

[68]  J. Connor,et al.  A review of models for ELMs , 1998 .

[69]  Yuji Nakamura,et al.  Global ballooning instabilities in a Heliotron J plasma , 2002 .

[70]  Yuji Nakamura,et al.  Ballooning instabilities in a Heliotron J plasma , 2001 .

[71]  C. Gormezano,et al.  A review of internal transport barrier physics for steady-state operation of tokamaks , 2004 .

[72]  P. T. Bonoli,et al.  Characterization of enhanced Dα high-confinement modes in Alcator C-Mod , 1999 .

[73]  M. Shats,et al.  Reversal of the Fluctuation-Induced Transport during Low to High Transitions in the H-1 Heliac Plasma , 1997 .

[74]  F. Sardei,et al.  A new quasi-stationary, very high density plasma regime on the W7-AS stellarator , 2002 .

[75]  H. Sanuki,et al.  ELECTRON THERMAL TRANSPORT BARRIER AND DENSITY FLUCTUATION REDUCTION IN A TOROIDAL HELICAL PLASMA , 1999 .

[76]  A. Fukuyama,et al.  Double Hysteresis in L/H Transition and Compound Dithers , 1996 .

[77]  T. Carlstrom Transition physics and scaling overview , 1996 .

[78]  M. Mori Overview of the recent experimental results in JT-60 and JFT-2M , 1994 .

[79]  B. Carreras,et al.  Generation of sheared poloidal flows via Reynolds stress and transport barrier physics , 2000 .

[80]  M. Yokoyama,et al.  Study of a helical axis heliotron , 2000 .

[81]  L. Giannone,et al.  Edge transport barrier formation and ELM phenomenology in the W7-AS stellarator , 2001 .

[82]  Liang,et al.  Self-Regulating Shear Flow Turbulence: A Paradigm for the L to H Transition. , 1994, Physical review letters.

[83]  G. Staebler,et al.  Turbulent viscosity bifurcation and the H-mode , 1993 .

[84]  Burrell,et al.  Role of edge electric field and poloidal rotation in the L-H transition. , 1990, Physical review letters.

[85]  A. Hubbard,et al.  Variation of edge gradients with heat flux across L-H and H-L transitions in Alcator C-Mod , 2002 .

[86]  Yuji Nakamura,et al.  Recent H-mode Results on ECH Plasmas in Heliotron J , 2003 .

[87]  O. Naito,et al.  Long sustainment of JT-60U plasmas with high integrated performance , 1999 .

[88]  Drake,et al.  Spontaneous poloidal spin-up of tokamaks and the transition to the H mode. , 1991, Physical review letters.

[89]  J. Kisslinger,et al.  On rotation of collisional plasmas in toroidal systems , 1995 .