High-speed tunable microwave-rate soliton microcomb

[1]  K. Vahala,et al.  Dispersive-wave induced noise limits in miniature soliton microwave sources , 2021, Nature Communications.

[2]  A. Boes,et al.  11 TOPS photonic convolutional accelerator for optical neural networks , 2021, Nature.

[3]  H. Tang,et al.  Photonic Dissipation Control for Kerr Soliton Generation in Strongly Raman-Active Media. , 2020, Physical review letters.

[4]  A. Beling,et al.  Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons , 2020, Light, science & applications.

[5]  Xiaoshun Jiang,et al.  Brillouin-Kerr Soliton Frequency Combs in an Optical Microresonator. , 2020, Physical review letters.

[6]  K. Vahala,et al.  Optical frequency combs: Coherently uniting the electromagnetic spectrum , 2020, Science.

[7]  Erwan Lucas,et al.  Photonic microwave generation in the X- and K-band using integrated soliton microcombs , 2020, Nature Photonics.

[8]  Xuan Li,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[9]  Erwan Lucas,et al.  Massively parallel coherent laser ranging using a soliton microcomb , 2019, Nature.

[10]  T. Kippenberg,et al.  Monolithic piezoelectric control of soliton microcombs , 2019, Nature.

[11]  Yoshitomo Okawachi,et al.  Raman lasing and soliton mode-locking in lithium niobate microresonators , 2019, Light: Science & Applications.

[12]  K. Srinivasan,et al.  Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. , 2019, Optics letters.

[13]  H. Tang,et al.  Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. , 2019, Optics letters.

[14]  T. C. Briles,et al.  Architecture for the photonic integration of an optical atomic clock , 2019, Optica.

[15]  T. Kippenberg,et al.  Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator , 2019, Nature Communications.

[16]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[17]  Joseph M. Kahn,et al.  Broadband electro-optic frequency comb generation in a lithium niobate microring resonator , 2018, Nature.

[18]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[19]  Kerry J. Vahala,et al.  Gigahertz-repetition-rate soliton microcombs , 2018 .

[20]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[21]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[22]  Xinbai Li,et al.  Single-mode dispersive waves and soliton microcomb dynamics , 2016, Nature Communications.

[23]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[24]  K. Vahala,et al.  Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. , 2016, Optics letters.

[25]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[26]  Steven A. Miller,et al.  Thermally controlled comb generation and soliton modelocking in microresonators. , 2016, Optics letters.

[27]  M. Qi,et al.  Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. , 2016, Optics express.

[28]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[29]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[30]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[31]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[32]  K. Vahala,et al.  Electro-optical frequency division and stable microwave synthesis , 2014, Science.

[33]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[34]  K. Vahala,et al.  Microwave synthesizer using an on-chip Brillouin oscillator , 2013, Nature Communications.

[35]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[36]  M. Vallet,et al.  Dual-Frequency Laser at 1.5 $\mu$ m for Optical Distribution and Generation of High-Purity Microwave Signals , 2008, Journal of Lightwave Technology.

[37]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Alexander A. Sobol,et al.  Raman spectroscopy of crystals for stimulated Raman scattering , 1999 .

[39]  Motoichi Ohtsu,et al.  Wide-span optical frequency comb generator for accurate optical frequency difference measurement , 1993 .

[40]  W. Schmidt,et al.  Raman scattering efficiency in LiTaO 3 and LiNbO 3 crystals , 2015 .

[41]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).