Factors Associated with the Development of Cross-Reactive Neutralizing Antibodies during Human Immunodeficiency Virus Type 1 Infection

ABSTRACT The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.

[1]  L. Stamatatos,et al.  Identification of a New Quaternary Neutralizing Epitope on Human Immunodeficiency Virus Type 1 Virus Particles , 2005, Journal of Virology.

[2]  Mark Connors,et al.  Broad HIV-1 neutralization mediated by CD4-binding site antibodies , 2007, Nature Medicine.

[3]  L. Stamatatos,et al.  The V1, V2, and V3 Regions of the Human Immunodeficiency Virus Type 1 Envelope Differentially Affect the Viral Phenotype in an Isolate-Dependent Manner , 2005, Journal of Virology.

[4]  F. Wurm,et al.  High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. , 2008, Biotechnology and bioengineering.

[5]  G. Ciliberto,et al.  Analysis of the HIV-1 gp41 specific immune response using a multiplexed antibody detection assay. , 2004, Journal of immunological methods.

[6]  R. Swanstrom,et al.  Multiple V1/V2 env Variants Are Frequently Present during Primary Infection with Human Immunodeficiency Virus Type 1 , 2004, Journal of Virology.

[7]  Xiping Wei,et al.  Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies , 2005, Journal of Virology.

[8]  B. Korber,et al.  Inter- and intraclade neutralization of human immunodeficiency virus type 1: genetic clades do not correspond to neutralization serotypes but partially correspond to gp120 antigenic serotypes , 1996, Journal of virology.

[9]  J. Moore,et al.  Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans , 1993, Journal of virology.

[10]  L. Stamatatos,et al.  Evidence that the structural conformation of envelope gp120 affects human immunodeficiency virus type 1 infectivity, host range, and syncytium-forming ability , 1993, Journal of virology.

[11]  Lynn Morris,et al.  Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C , 2008, Journal of Virology.

[12]  H. Katinger,et al.  A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. , 2001, AIDS research and human retroviruses.

[13]  D. Montefiori,et al.  Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in long-term nonprogressors. , 1996, The Journal of infectious diseases.

[14]  L. Stamatatos,et al.  N-Linked Glycosylation of the V3 Loop and the Immunologically Silent Face of gp120 Protects Human Immunodeficiency Virus Type 1 SF162 from Neutralization by Anti-gp120 and Anti-gp41 Antibodies , 2004, Journal of Virology.

[15]  Philip R. Johnson,et al.  Correlation between env V1/V2 Region Diversification and Neutralizing Antibodies during Primary Infection by Simian Immunodeficiency Virus sm in Rhesus Macaques , 2004, Journal of Virology.

[16]  D. Richman,et al.  Rapid evolution of the neutralizing antibody response to HIV type 1 infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Berman,et al.  Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization , 1994, Journal of virology.

[18]  F. Bibollet-Ruche,et al.  Role of V1V2 and Other Human Immunodeficiency Virus Type 1 Envelope Domains in Resistance to Autologous Neutralization during Clade C Infection , 2007, Journal of Virology.

[19]  L. Stamatatos,et al.  Antibody Responses Elicited in Macaques Immunized with Human Immunodeficiency Virus Type 1 (HIV-1) SF162-Derived gp140 Envelope Immunogens: Comparison with Those Elicited during Homologous Simian/Human Immunodeficiency Virus SHIVSF162P4 and Heterologous HIV-1 Infection , 2006, Journal of Virology.

[20]  Q. Sattentau,et al.  Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding , 1991, The Journal of experimental medicine.

[21]  D. Montefiori,et al.  Assessment of antibody responses against gp41 in HIV-1-infected patients using soluble gp41 fusion proteins and peptides derived from M group consensus envelope , 2007, Virology.

[22]  Q. Sattentau,et al.  Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding , 1993, Journal of virology.

[23]  Renate Kunert,et al.  Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies , 2005, Science.

[24]  L. Stamatatos,et al.  Prospects of HIV Env modification as an approach to HIV vaccine design. , 2007, Current HIV research.

[25]  Dennis R. Burton,et al.  Identification and Characterization of a New Cross-Reactive Human Immunodeficiency Virus Type 1-Neutralizing Human Monoclonal Antibody , 2022 .

[26]  Douglas D. Richman,et al.  Dissecting the Neutralizing Antibody Specificities of Broadly Neutralizing Sera from Human Immunodeficiency Virus Type 1-Infected Donors , 2007, Journal of Virology.

[27]  C. Blish,et al.  HIV-1 subtype A envelope variants from early in infection have variable sensitivity to neutralization and to inhibitors of viral entry , 2007, AIDS.

[28]  Paul W. H. I. Parren,et al.  Fine Mapping of the Interaction of Neutralizing and Nonneutralizing Monoclonal Antibodies with the CD4 Binding Site of Human Immunodeficiency Virus Type 1 gp120 , 2003, Journal of Virology.

[29]  J. Sodroski,et al.  CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization , 1998, Journal of Virology.

[30]  D. Ho,et al.  Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. , 1995, The New England journal of medicine.

[31]  Hui Li,et al.  Neutralizing Antibody Responses in Acute Human Immunodeficiency Virus Type 1 Subtype C Infection , 2007, Journal of Virology.

[32]  L. Stamatatos,et al.  Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates. , 2008, Virology.

[33]  John P. Moore,et al.  Nonneutralizing Antibodies to the CD4-Binding Site on the gp120 Subunit of Human Immunodeficiency Virus Type 1 Do Not Interfere with the Activity of a Neutralizing Antibody against the Same Site , 2003, Journal of Virology.

[34]  E. Sanders-Buell,et al.  Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models. , 2008, Virology.

[35]  Martin A. Nowak,et al.  Antibody neutralization and escape by HIV-1 , 2003, Nature.

[36]  J. Moore,et al.  Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement , 1996, Journal of virology.

[37]  J. Moore,et al.  Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1 , 1994, Journal of virology.

[38]  Renate Kunert,et al.  Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies , 2004, Journal of Virology.

[39]  Ying Sun,et al.  Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates , 1995, Journal of virology.

[40]  C. Cheng‐Mayer,et al.  Identification of human immunodeficiency virus subtypes with distinct patterns of sensitivity to serum neutralization. , 1988, Proceedings of the National Academy of Sciences of the United States of America.