Functional effects of mutations in cytochrome c oxidase related to prostate cancer.

[1]  R. Greenspan,et al.  Neurogenetics , 2019, Journal of the Neurological Sciences.

[2]  R. Gennis,et al.  A pathogenic mutation in cytochrome c oxidase results in impaired proton pumping while retaining O(2)-reduction activity. , 2010, Biochimica et biophysica acta.

[3]  Robert W. Taylor,et al.  Mitochondrial DNA mutations and human disease. , 2010, Biochimica et biophysica acta.

[4]  Laura C. Greaves,et al.  Mitochondrial DNA mutations and ageing. , 2009, Biochimica et biophysica acta.

[5]  Yidong Bai,et al.  Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis , 2009, Cell Research.

[6]  P. Brzezinski,et al.  A mitochondrial DNA mutation linked to colon cancer results in proton leaks in cytochrome c oxidase , 2009, Proceedings of the National Academy of Sciences.

[7]  H. Fukui,et al.  The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? , 2008, Trends in Neurosciences.

[8]  Hirokazu Fukui,et al.  Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer's disease , 2007, Proceedings of the National Academy of Sciences.

[9]  P. Brzezinski,et al.  The inside pH determines rates of electron and proton transfer in vesicle-reconstituted cytochrome c oxidase. , 2007, Biochimica et biophysica acta.

[10]  M. Suematsu,et al.  The proton pumping pathway of bovine heart cytochrome c oxidase , 2007, Proceedings of the National Academy of Sciences.

[11]  Anne Mulichak,et al.  Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase , 2006, Proceedings of the National Academy of Sciences.

[12]  A. Chatterjee,et al.  Mitochondrial DNA mutations in human cancer , 2006, Oncogene.

[13]  J. Enríquez,et al.  m.6267G>A: a recurrent mutation in the human mitochondrial DNA that reduces cytochrome c oxidase activity and is associated with tumors , 2006, Human mutation.

[14]  R. Carrozzo,et al.  Introducing a novel human mtDNA mutation into the Paracoccus denitrificans COX I gene explains functional deficits in a patient , 2006, Neurogenetics.

[15]  Robert W. Taylor,et al.  Mitochondrial DNA mutations in human disease , 2005, Nature Reviews Genetics.

[16]  Robert S. Balaban,et al.  Mitochondria, Oxidants, and Aging , 2005, Cell.

[17]  John A. Hall,et al.  mtDNA mutations increase tumorigenicity in prostate cancer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Bratton,et al.  Disease-related mutations in cytochrome c oxidase studied in yeast and bacterial models. , 2003, European journal of biochemistry.

[19]  S. Iwata,et al.  The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. , 2002, Journal of molecular biology.

[20]  J. Taanman,et al.  Mutations of cytochrome c oxidase subunits 1 and 3 in Saccharomyces cerevisiae: assembly defect and compensation. , 2002, Biochimica et biophysica acta.

[21]  S. Nomoto,et al.  Mitochondrial mutations in early stage prostate cancer and bodily fluids , 2001, Oncogene.

[22]  B. Meunier Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. , 2001, The Biochemical journal.

[23]  G Parmigiani,et al.  Detection of mitochondrial DNA mutations in pancreatic cancer offers a "mass"-ive advantage over detection of nuclear DNA mutations. , 2001, Cancer research.

[24]  M. Saraste,et al.  FEBS Lett , 2000 .

[25]  R. Gennis,et al.  Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation. , 1999, Biochemistry.

[26]  M. Wikström,et al.  Assignment and charge translocation stoichiometries of the major electrogenic phases in the reaction of cytochrome c oxidase with dioxygen. , 1999, Biochemistry.

[27]  P. Brzezinski,et al.  Factors determining electron-transfer rates in cytochrome c oxidase: investigation of the oxygen reaction in the R. sphaeroides enzyme. , 1998, Biochimica et biophysica acta.

[28]  M. Mather,et al.  Intrinsic uncoupling of cytochrome c oxidase may cause the maternally inherited mitochondrial diseases MELAS and LHON , 1998, FEBS letters.

[29]  S. Ferguson-Miller,et al.  Overexpression and purification of cytochrome c oxidase from Rhodobacter sphaeroides. , 1998, Protein expression and purification.

[30]  S. Ferguson-Miller,et al.  Heme/Copper Terminal Oxidases. , 1996, Chemical reviews.

[31]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[32]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[33]  R. Gennis,et al.  Rapid purification of wildtype and mutant cytochrome c oxidase from Rhodobacter sphaeroides by Ni2+‐NTA affinity chromatography , 1995, FEBS letters.

[34]  A. Revzin,et al.  Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. The coxII/coxIII operon codes for structural and assembly proteins homologous to those in yeast. , 1992, The Journal of biological chemistry.

[35]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Kobayashi,et al.  Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. , 1988, Gene.

[37]  H. J. Gamble Trends in Neurosciences , 1980 .

[38]  W. E. Gye,et al.  CANCER RESEARCH , 1923, British medical journal.