Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates.

Combinatorial pulsed laser deposition (CPLD) using two targets was used to produce a range of transition metal-substituted perovskite-structured Sr(Ti(1-x)M(x))O(3-δ) films on buffered silicon substrates, where M = Fe, Cr, Ni and Mn and x = 0.05-0.5. CPLD produced samples whose composition vs distance fitted a linear combination of the compositions of the two targets. Sr(Ti(1-x)Fe(x))O(3-δ) films produced from a pair of perovskite targets (SrTiO(3) and SrFeO(3) or SrTiO(3) and SrTi0(0.575)Fe(0.425)O(3)) had properties similar to those of films produced from single targets, showing a single phase microstructure, a saturation magnetization of 0.5 μ(B)/Fe, and a strong out-of-plane magnetoelastic anisotropy at room temperature. Films produced from an SrTiO(3) and a metal oxide target consisted of majority perovskite phases with additional metal oxide (or metal in the case of Ni) phases. Films made from SrTiO(3) and Fe(2)O(3) targets retained the high magnetic anisotropy of Sr(Ti(1-x)Fe(x))O(3-δ), but had a much higher saturation magnetization than single-target films, reaching for example an out-of-plane coercivity of >2 kOe and a saturation magnetization of 125 emu/cm(3) at 24%Fe. This was attributed to the presence of maghemite or magnetite exchange-coupled to the Sr(Ti(1-x)Fe(x))O(3-δ). Films of Sr(Ti(1-x)Cr(x))O(3-δ) and Sr(Ti(1-x)Mn(x))O(3-δ) showed no room temperature ferromagnetism, but Sr(Ti(1-x)Ni(x))O(3-δ) did show a high anisotropy and magnetization attributed mainly to the perovskite phase. Combinatorial synthesis is shown to be an efficient process for enabling evaluation of the properties of epitaxial substituted perovskite films as well as multiphase films which have potential for a wide range of electronic, magnetic, optical, and catalytic applications.

[1]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[2]  E. Fullerton,et al.  Hard/soft magnetic heterostructures: model exchange-spring magnets , 1999 .

[3]  Lei Bi,et al.  Structure, magnetic properties and magnetoelastic anisotropy in epitaxial Sr(Ti1−xCox)O3 films , 2010 .

[4]  K. Morii,et al.  Origin of the leakage current in Zr-substituted magneto-dielectric BaFeO3−δ single-crystal films on (0 0 1) SrTiO3 substrates , 2007 .

[5]  C. Eom,et al.  Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films , 1998 .

[6]  John D. Budai,et al.  Properties of Mn-Implanted BaTiO3 , SrTiO3 , and KTaO3 , 2003 .

[7]  M. Helm,et al.  Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing , 2008, 0908.0458.

[8]  N. Minh,et al.  SrTi1-xNixO3 nanoparticles: synthesis and characterisation , 2011 .

[9]  Continuous compositional-spread technique based on pulsed-laser deposition and applied to the growth of epitaxial films , 2001, cond-mat/0104157.

[10]  Choi,et al.  Electronic-transport behavior in single-crystalline Ba0.03Sr0.97TiO3. , 1986, Physical review. B, Condensed matter.

[11]  U. Joshi,et al.  Combinatorial fabrication and magnetic properties of homoepitaxial Co and Li co-doped NiO thin-film nanostructures , 2009 .

[12]  B. H. Liu,et al.  Size-dependent magnetism and spin-glass behavior of amorphous NiO bulk, clusters, and nanocrystals: Experiments and first-principles calculations , 2007 .

[13]  P. Vilarinho,et al.  Dependence of dielectric properties of manganese-doped strontium titanate ceramics on sintering atmosphere , 2006 .

[14]  Rajeev J. Ram,et al.  Magneto-optical properties of iron oxide films , 2003 .

[15]  C. Ross,et al.  Pulsed laser deposition of iron oxide films , 2002 .

[16]  H. Kume,et al.  Magnetic properties of SrTiO3-buffered Ba(Fe0.2Zr0.8)O3−δ films on Si(001) substrates , 2009 .

[17]  E. Alves,et al.  Interpretation of double x-ray diffraction peaks from InGaN layers , 2001 .

[18]  R. Dittmann,et al.  Coexistence of Filamentary and Homogeneous Resistive Switching in Fe‐Doped SrTiO3 Thin‐Film Memristive Devices , 2010, Advanced materials.

[19]  Tomoaki Yamada,et al.  Epitaxial growth of SrTiO3 films on CeO2/yttria-stabilized zirconia/Si(001) with TiO2 atomic layer by pulsed-laser deposition , 2003 .

[20]  S. Migita,et al.  Epitaxial structure SrTiO3〈011〉 on Si〈001〉 , 2001 .

[21]  Dong Hun Kim,et al.  Magnetoelastic effects in SrTi 1 − x M x O 3 ( M = Fe , Co , or Cr ) epitaxial thin films , 2011 .

[22]  W. Y. Yu,et al.  Stability and magnetism of vacancy in NiO: A GGA+U study , 2008 .

[23]  Z. Ivanov,et al.  Structural aspect of YBa2Cu3O7−x films on Si with complex barrier layers , 1995 .

[24]  G. Tendeloo,et al.  Structural investigation of the epitaxial yittria-stabilized zirconia films deposited on (001) silicon by laser ablation , 2001 .

[25]  Yuanhua Lin,et al.  Magnetic and Electrical Properties of (Mn, La)‐Codoped SrTiO3 Thin Films , 2008 .

[26]  Goldman,et al.  Giant Piezoelectric Effect in Strontium Titanate at Cryogenic Temperatures , 1997, Science.

[27]  Caroline A. Ross,et al.  Magnetic and magneto-optical properties of Fe-doped SrTiO3 films , 2008 .

[28]  A. Ohtomo,et al.  Parallel syntheses and thermoelectric properties of Ce-doped SrTiO3 thin films , 2007 .

[29]  Ellen Ivers-Tiffée,et al.  Electronic Structure, Defect Chemistry, and Transport Properties of SrTi1-xFexO3-y Solid Solutions , 2006 .

[30]  A. Cheetham,et al.  Giant magnetoresistance, charge‐ordering, and related aspects of manganates and other oxide systems , 1997 .

[31]  P. Littlewood,et al.  Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors , 1998, Nature.

[32]  L. Jastrabík,et al.  Manganese oxide nanoparticles in SrTiO3:Mn , 2008 .

[33]  R. Ramesh,et al.  Title Advances in the growth and characterization of magnetic , ferroelectric , and multiferroic oxide thin films , 2010 .

[34]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[35]  Young Woon Kim,et al.  Dielectric properties of strained (Ba, Sr)TiO3 thin films epitaxially grown on Si with thin yttria-stabilized zirconia buffer layer , 2001 .

[36]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[37]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[38]  S. Gevorgian,et al.  Microwave properties of SrTiO3/SrRuO3/CeO2/YSZ heterostructure on low-resistivity silicon , 2002 .

[39]  C. Ross,et al.  Self-assembled single-phase perovskite nanocomposite thin films. , 2010, Nano letters.