Inferior Parietal Lobule Encodes Visual Temporal Resolution Processes Contributing to the Critical Flicker Frequency Threshold in Humans

The measurement of the Critical Flicker Frequency threshold is used to study the visual temporal resolution in healthy subjects and in pathological conditions. To better understand the role played by different cortical areas in the Critical Flicker Frequency threshold perception we used continuous Theta Burst Stimulation (cTBS), an inhibitory plasticity-inducing protocol based on repetitive transcranial magnetic stimulation. The Critical Flicker Frequency threshold was measured in twelve healthy subjects before and after cTBS applied over different cortical areas in separate sessions. cTBS over the left inferior parietal lobule altered the Critical Flicker Frequency threshold, whereas cTBS over the left mediotemporal cortex, primary visual cortex and right inferior parietal lobule left the Critical Flicker Frequency threshold unchanged. No statistical difference was found when the red or blue lights were used. Our findings show that left inferior parietal lobule is causally involved in the conscious perception of Critical Flicker Frequency and that Critical Flicker Frequency threshold can be modulated by plasticity-inducing protocols.

[1]  Steven R. Holloway,et al.  Visual experience can substantially alter critical flicker fusion thresholds , 2005, Human psychopharmacology.

[2]  P. Rossini,et al.  Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence , 2008, Neuropsychologia.

[3]  J. Rothwell,et al.  Effects of theta burst stimulation protocols on phosphene threshold , 2006, Clinical Neurophysiology.

[4]  E. Simonson,et al.  Flicker fusion frequency; background and applications. , 1952, Physiological reviews.

[5]  M. Raichle,et al.  Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. , 1984, Journal of neurophysiology.

[6]  D. Spinelli,et al.  Hemispheric asymmetry of pattern reversal visual evoked potentials in healthy subjects. , 1987, International Journal of Psychophysiology.

[7]  F L Mastaglia,et al.  Magnetic stimulation mapping of motor cortex: factors contributing to map area. , 1998, Electroencephalography and clinical neurophysiology.

[8]  E. Piovesan,et al.  Critical Flicker Frequency in Migraine. A Controlled Study in Patients without Prophylactic Therapy , 2005, Cephalalgia : an international journal of headache.

[9]  A. Berardelli,et al.  Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans , 2012, PloS one.

[10]  V. P. Costa,et al.  Flicker perimetry in healthy subjects: influence of age and gender, learning effect and short-term fluctuation. , 2007, Arquivos brasileiros de oftalmologia.

[11]  C. Bonnet,et al.  Hemispheric Asymmetries in the Visual Evoked Potentials to Temporal Frequency: Preliminary Evidence , 1986, Perception.

[12]  L. M. Franklin,et al.  The flicker-fusion threshold in schizophrenia and depression. , 1975, The New Zealand medical journal.

[13]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[14]  V. Hömberg,et al.  Cerebral visual motion blindness: transitory akinetopsia induced by transcranial magnetic stimulation of human area V5 , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  François Mauguière,et al.  Human lateral geniculate nucleus and visual cortex respond to screen flicker , 2003, Annals of neurology.

[16]  Pieter R Roelfsema,et al.  The role of primary visual cortex (V1) in visual awareness , 2000, Vision Research.

[17]  J. Rothwell,et al.  Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation , 2007, Clinical Neurophysiology.

[18]  Neri Accornero,et al.  A differential color flicker test for detecting acquired color vision impairment in multiple sclerosis and diabetic retinopathy , 2011, Journal of the Neurological Sciences.

[19]  Karl Zilles,et al.  Neural mechanism underlying impaired visual judgement in the dysmetabolic brain: an fMRI study , 2004, NeuroImage.

[20]  Juha Silvanto,et al.  The role of early visual cortex (V1/V2) in conscious and unconscious visual perception , 2010, NeuroImage.

[21]  S. Hosking,et al.  Quantitative Correlation of Hyperventilation with Flicker Sensitivity , 2007, Optometry and vision science : official publication of the American Academy of Optometry.

[22]  Juha Silvanto,et al.  Double dissociation of V1 and V5/MT activity in visual awareness. , 2005, Cerebral cortex.

[23]  M. Stokes,et al.  Biophysical determinants of transcranial magnetic stimulation: effects of excitability and depth of targeted area. , 2013, Journal of neurophysiology.

[24]  R. Ricci,et al.  Illusory contours and specific regions of human extrastriate cortex: evidence from rTMS , 2003, The European journal of neuroscience.

[25]  J. Wattis,et al.  Critical flicker fusion threshold: a potentially useful measure for the early detection of Alzheimer's disease , 2000, Human psychopharmacology.

[26]  Francesco Lacquaniti,et al.  Contributions of the Human Temporoparietal Junction and MT/V5+ to the Timing of Interception Revealed by Transcranial Magnetic Stimulation , 2008, The Journal of Neuroscience.

[27]  Salvatore M Aglioti,et al.  Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia , 2003, Neurology.

[28]  T. Kraft,et al.  ERG critical flicker frequency assessment in humans. , 2012, Advances in experimental medicine and biology.

[29]  M. Raichle,et al.  Stimulus rate determines regional brain blood flow in striate cortex , 1985, Annals of neurology.

[30]  Sven Bestmann,et al.  The physiological basis of transcranial magnetic stimulation , 2008, Trends in Cognitive Sciences.

[31]  James Toman,et al.  FLICKER POTENTIALS AND THE ALPHA RHYTHM IN MAN , 1941 .

[32]  Laura Bertolasi,et al.  Temporal processing of visuotactile and tactile stimuli in writer's cramp , 2003, Annals of neurology.

[33]  R. Ivry,et al.  The neural representation of time , 2004, Current Opinion in Neurobiology.

[34]  Andreas Bartels,et al.  fMRI and its interpretations: an illustration on directional selectivity in area V5/MT , 2008, Trends in Neurosciences.

[35]  G. Rees,et al.  Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  L. Nyberg,et al.  Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? , 2005, Consciousness and Cognition.

[37]  P. Cavanagh,et al.  Bilateral deficits of transient visual attention in right parietal patients. , 2003, Brain : a journal of neurology.

[38]  J. Rothwell,et al.  Sensory Tricks in Primary Cervical Dystonia Depend on Visuotactile Temporal Discrimination , 2013, Movement disorders : official journal of the Movement Disorder Society.

[39]  T. Kammer,et al.  Phosphene thresholds evoked with single and double TMS pulses , 2010, Clinical Neurophysiology.

[40]  S Hecht,et al.  The Influence of Intensity, Color and Retinal Location on the Fusion Frequency of Intermittent Illumination. , 1933, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Iacoboni,et al.  Correlation between motor and phosphene thresholds: A transcranial magnetic stimulation study , 2008, Human brain mapping.

[42]  A. Berardelli,et al.  Theta‐burst stimulation over primary motor cortex degrades early motor learning , 2010, The European journal of neuroscience.

[43]  Madison H. Thomas,et al.  Critical flicker frequency and EEG findings in patients with brain damage , 1958, Neurology.

[44]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[45]  N. Cooper,et al.  The effect of rTMS over the inferior parietal lobule on EEG sensorimotor reactivity differs according to self-reported traits of autism in typically developing individuals , 2013, Brain Research.

[46]  M. Nicholls,et al.  Temporal processing asymmetries between the cerebral hemispheres: evidence and implications. , 1996, Laterality.

[47]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[48]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[49]  日高 靖彦 光駆動脳波(Photic Driving) , 1965 .

[50]  S. Musa,et al.  Critical Flicker Fusion Threshold in patients with Alzheimer's disease and vascular dementia , 2004, International journal of geriatric psychiatry.

[51]  Rainer Goebel,et al.  The temporal characteristics of motion processing in hMT/V5+: Combining fMRI and neuronavigated TMS , 2006, NeuroImage.

[52]  E. Midena Psychophysics and visual aging. , 1989, Metabolic, pediatric, and systemic ophthalmology.

[53]  Frederik Barkhof,et al.  Determination of individual stimulus–response curves in the visual cortex , 2002, Human brain mapping.

[54]  Dean V Buonomano,et al.  Timing of neural responses in cortical organotypic slices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  K. H. Mild,et al.  Steady-state visual evoked potentials to computer monitor flicker. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[56]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[57]  C W Tyler,et al.  Two processes control variations in flicker sensitivity over the life span. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[58]  W. Singer,et al.  The response of cat visual cortex to flicker stimuli of variable frequency , 1998, The European journal of neuroscience.

[59]  S. Anand,et al.  The selectivity and timing of motion processing in human temporo–parieto–occipital and occipital cortex: a transcranial magnetic stimulation study , 1998, Neuropsychologia.

[60]  Heidi S. Fisher,et al.  Adaptation from invisible flicker. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Nadia Bolognini,et al.  TMS modulation of visual and auditory processing in the posterior parietal cortex , 2009, Experimental Brain Research.

[62]  Cyrill v. Tiesenhausen,et al.  The navigation of transcranial magnetic stimulation , 2001, Psychiatry Research: Neuroimaging.

[63]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[64]  Robin Laycock,et al.  Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception. , 2007, Journal of neurophysiology.

[65]  C. Koch,et al.  The Neural Correlates of Consciousness , 2008, Annals of the New York Academy of Sciences.

[66]  David A Leopold,et al.  Primary visual cortex: awareness and blindsight. , 2012, Annual review of neuroscience.

[67]  David M. Eagleman,et al.  A method for achieving an order-of-magnitude increase in the temporal resolution of a standard CRT computer monitor , 2008, Journal of Neuroscience Methods.

[68]  Manuel Romero-Gómez,et al.  Value of the critical flicker frequency in patients with minimal hepatic encephalopathy , 2007, Hepatology.

[69]  J. Rothwell,et al.  The after-effect of human theta burst stimulation is NMDA receptor dependent , 2007, Clinical Neurophysiology.

[70]  M. Erb,et al.  The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation , 2001, Clinical Neurophysiology.

[71]  J. Gibbon Scalar expectancy theory and Weber's law in animal timing. , 1977 .

[72]  Vincent Walsh,et al.  Right parietal cortex plays a critical role in change blindness. , 2006, Cerebral cortex.

[73]  Walter Paulus,et al.  Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human , 2003, Neuropsychologia.

[74]  Geraint Rees,et al.  Conscious Awareness of Flicker in Humans Involves Frontal and Parietal Cortex , 2006, Current Biology.

[75]  K. Ciuffreda,et al.  Foveal versus eccentric retinal critical flicker frequency in mild traumatic brain injury. , 2009, Optometry.

[76]  Ke Zhou,et al.  Human visual cortex responds to invisible chromatic flicker , 2007, Nature Neuroscience.

[77]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[78]  Michael K. Hutchinson,et al.  Temporal discrimination thresholds in adult-onset primary torsion dystonia: an analysis by task type and by dystonia phenotype , 2011, Journal of Neurology.

[79]  Hyunwoo Nam,et al.  Visual working memory revealed by repetitive transcranial magnetic stimulation , 2000, Journal of Neurological Sciences.

[80]  A. Cowey,et al.  Magnetically induced phosphenes in sighted, blind and blindsighted observers , 2000, Neuroreport.