Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength

[1]  Tanja Zimmermann,et al.  Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential , 2010 .

[2]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[3]  Peter Josefsson,et al.  Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[4]  Tiina Nypelö,et al.  Layer structures formed by silica nanoparticles and cellulose nanofibrils with cationic polyacrylamide (C-PAM) on cellulose surface and their influence on interactions , 2009, BioResources.

[5]  M. Misra,et al.  Natural, Fibers, Biopolymers and Biocomposites , 2009 .

[6]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[7]  Kristin Syverud,et al.  The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper , 2008 .

[8]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[9]  M. Österberg,et al.  Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive , 2008 .

[10]  Leena‐Sisko Johansson,et al.  Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. , 2008, Biomacromolecules.

[11]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[12]  E. Retulainen,et al.  Effect of Chemical Pulp Fines on Filler Retention and Paper Properties , 2007 .

[13]  John A. Heitmann,et al.  Review of factors affecting the release of water from cellulosic fibers during paper manufacture , 2007, BioResources.

[14]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[15]  Leena‐Sisko Johansson,et al.  Properties and characterization of hydrophobized microfibrillated cellulose , 2006 .

[16]  Michael E Himmel,et al.  The maize primary cell wall microfibril: a new model derived from direct visualization. , 2006, Journal of agricultural and food chemistry.

[17]  L. Berglund Cellulose-Based Nanocomposites , 2005 .

[18]  Staffan Persson,et al.  Toward a Systems Approach to Understanding Plant Cell Walls , 2004, Science.

[19]  Hiroyuki Yano,et al.  Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network , 2004 .

[20]  G. Garnier,et al.  Adsorption of modified starches on pulp fibers , 2003 .

[21]  P. Harris,et al.  Atomic force microscopy of microfibrils in primary cell walls , 2003, Planta.

[22]  T. Ven A model for the adsorption of polyelectrolytes on pulp fibers: Relation between fiber structure and polyelectrolyte properties , 2000 .

[23]  M. Vignon,et al.  Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR , 1999 .

[24]  Takashi Taniguchi,et al.  New films produced from microfibrillated natural fibres , 1998 .

[25]  P Colonna,et al.  Starch granules: structure and biosynthesis. , 1998, International journal of biological macromolecules.

[26]  Peter Fratzl,et al.  The elementary cellulose fibril in Picea abies : comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results , 1995 .

[27]  S. Sjöberg,et al.  Potentiometric titration of unbleached kraft cellulose fibre surfaces , 1994 .

[28]  G. Carlsson,et al.  Surface characterization of unbleached kraft pulps by means of ESCA , 1994 .

[29]  T. Lindstroem Chemical factors affecting the behaviour of fibres during papermaking , 1992 .

[30]  Tom Lindström,et al.  Deswelling of hardwood kraft pulp fibers by cationic polymers , 1990 .

[31]  E. Sjöström The origin of charge on cellulosic fibers , 1989 .

[32]  Kjell Andersson,et al.  The use of cationic starch and colloidal silica to improve the drainage characteristics of kraft pulps , 1986 .

[33]  T. Lindström,et al.  Polyelectrolyte swelling behavior of chlorite delignified spruce wood fibers , 1983, Wood Science and Technology.

[34]  K. W. Britt,et al.  Retention, drainage, and sheet consolidation , 1982 .

[35]  A. Scallan,et al.  Effect of pH and neutral salts upon the swelling of cellulose gels , 1980 .

[36]  J. D. Reid,et al.  The Partial Carboxymethylation of Cotton to Obtain Swellable Fibers, I , 1947 .

[37]  J. Salmi Surface interactions in polyelectrolyte-cellulose systems and their implications for flocculation mechanisms , 2009 .

[38]  Petri Myllytie Interactions of polymers with fibrillar structure of cellulose fibres :a new approach to bonding and strength in paper , 2009 .

[39]  Paul Cutts Retention and Drainage , 2009 .

[40]  S. Ahola Properties and interfacial behaviour of cellulose nanofibrils , 2008 .

[41]  Hiroyuki Yano,et al.  Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure , 2005 .

[42]  R. Pelton,et al.  A new look at how fines influence the strength of filled papers , 2005 .

[43]  A. Sundberg,et al.  Fines in closed circuits - Final report , 2002 .

[44]  Daisuke Tatsumi,et al.  Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions , 2002 .

[45]  J. Péré,et al.  Papermaking quality of fines from different pulps - the effect of size, shape and chemical composition , 2001 .

[46]  H. Paulapuro,et al.  Papermaking Science and Technology, Book 3.Forest Products Chemistry , 2000 .

[47]  H. Paulapuro,et al.  Papermaking Science and Technology.Book 4.Papermaking Chemistry , 1999 .

[48]  Johan Gullichsen,et al.  Papermaking Science and Technology, Book 16.Paper Physics , 1998 .

[49]  E. Retulainen,et al.  Fibers and bonds , 1998 .

[50]  J. Marton,et al.  Dry-strength additives , 1996 .

[51]  M. Towers,et al.  Predicting the ion-exchange of kraft pulps using Donnan Theory , 1996 .

[52]  Elias Retulainen,et al.  Fibre properties as control variables in papermaking : Part 2. Strengthening interfibre bonds and reducing grammage , 1996 .

[53]  E. Retulainen,et al.  Effect of fines on the properties of fibre networks , 1993 .

[54]  E. Retulainen,et al.  Enhancing strength properties of kraft and CTMP fibre networks , 1993 .

[55]  H.G.M. van de Steeg Cationic starches on cellulose surfaces : a study of polyelectrolyte adsorption , 1992 .

[56]  D. Manners Recent developments in our understanding of amylopectin structure , 1989 .

[57]  T. Lindström,et al.  On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials , 1987 .

[58]  K. W. Britt,et al.  Observations on water removal in papermaking , 1986 .

[59]  T. Lindstrom,et al.  Effects of pH and electrolyte concentration on the adsorption of cationic polyacrylamides on cellulose , 1983 .

[60]  D. Cousins,et al.  Role of the deaerator in the paper mill , 1983 .

[61]  J. Hamilton,et al.  Microfibrillated cellulose: morphology and accessibility , 1983 .

[62]  K. R. Sandberg,et al.  Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential , 1983 .

[63]  A. Scallan,et al.  The effect of cations on pulp and paper properties , 1979 .

[64]  S. M. Neale 30—THE SWELLING OF CELLULOSE, AND ITS AFFINITY RELATIONS WITH AQUEOUS SOLUTIONS. PART I—EXPERIMENTS ON THE BEHAVIOUR OF COTTON CELLULOSE AND REGENERATED CELLULOSE IN SODIUM HYDROXIDE SOLUTION, AND THEIR THEORETICAL INTERPRETATION , 1929 .

[65]  F. Donnan,et al.  CLXXVII.—The osmotic pressure and conductivity of aqueous solutions of congo-red, and reversible membrane equilibria , 1911 .