Parallel Imaging in MR Angiography

The recently developed techniques of parallel imaging with phased array coils are rapidly becoming accepted for magnetic resonance angiography (MRA) applications. This article reviews the various current parallel imaging techniques and their application to MRA. The increased scan efficiency provided by parallel imaging allows increased temporal or spatial resolution, and reduction of artifacts in contrast-enhanced MRA (CE-MRA). Increased temporal resolution in CE-MRA can be used to reduce the need for bolus timing and to provide hemodynamic information helpful for diagnosis. In addition, increased spatial resolution (or volume coverage) can be acquired in a breathhold (eg, in renal CE-MRA), or in otherwise limited clinically acceptable scan durations. The increased scan efficiency provided by parallel imaging has been successfully applied to CE-MRA as well as other MRA techniques such as inflow and phase contrast imaging. The large signal-to-noise ratio available in many MRA techniques lends these acquisitions to increased scan efficiency through parallel imaging.

[1]  J. V. van Engelshoven,et al.  Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. , 1998, Radiology.

[2]  J. Kaufman,et al.  Evaluation of renal artery stenosis with dynamic gadolinium-enhanced MR angiography. , 1997, AJR. American journal of roentgenology.

[3]  M. Bock,et al.  Renal arteries: optimization of three-dimensional gadolinium-enhanced MR angiography with bolus-timing-independent fast multiphase acquisition in a single breath hold. , 1999, Radiology.

[4]  Gerhard Laub,et al.  Dynamic 3D MR angiography of the pulmonary arteries in under four seconds , 2001, Journal of magnetic resonance imaging : JMRI.

[5]  D C Peters,et al.  Undersampled projection‐reconstruction imaging for time‐resolved contrast‐enhanced imaging , 2000, Magnetic resonance in medicine.

[6]  T K Foo,et al.  Automated bolus chase peripheral MR angiography: Initial practical experiences and future directions of this work‐in‐progress , 1999, Journal of magnetic resonance imaging : JMRI.

[7]  D. Kacher,et al.  Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP) , 2000, Magnetic resonance in medicine.

[8]  O. Velazquez,et al.  Magnetic resonance angiography of lower-extremity arterial disease. , 1998, The Surgical clinics of North America.

[9]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[10]  G. Glover,et al.  Encoding strategies for three‐direction phase‐contrast MR imaging of flow , 1991, Journal of magnetic resonance imaging : JMRI.

[11]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[12]  R. Edelman,et al.  Resolution enhancement in single‐shot imaging using simultaneous acquisition of spatial harmonics (SMASH) , 1999, Magnetic resonance in medicine.

[13]  D. D. Maki,et al.  Pulmonary arteriovenous malformations: three-dimensional gadolinium-enhanced MR angiography-initial experience. , 2001, Radiology.

[14]  N. Ichinose,et al.  One-Second Temporal Resolution 4D MR DSA with 3D TRICKS, Elliptical Centric View Ordering, and Parallel Imaging , 2003 .

[15]  N J Pelc,et al.  SMASH and SENSE: Experimental and numerical comparisons , 2001, Magnetic resonance in medicine.

[16]  M. Heller,et al.  Contrast‐enhanced, k‐space‐centered, breath‐hold MR angiography of the renal arteries and the abdominal aorta , 1997, Journal of magnetic resonance imaging : JMRI.

[17]  M. Nittka,et al.  Partially parallel imaging with localized sensitivities (PILS) , 2000, Magnetic resonance in medicine.

[18]  M. L. Lauzon,et al.  Magnetic Resonance Imaging at 3.0 Tesla: Challenges and Advantages in Clinical Neurological Imaging , 2003, Investigative radiology.

[19]  T D Nguyen,et al.  Optimization of view ordering for motion artifact suppression. , 2001, Magnetic resonance imaging.

[20]  P M Jakob,et al.  VD‐AUTO‐SMASH imaging , 2001, Magnetic resonance in medicine.

[21]  J. Finn,et al.  MR imaging of the thoracic aorta. , 2003, Magnetic resonance imaging clinics of North America.

[22]  J. Gieseke,et al.  Rapid Left-to-Right Shunt Quantification in Children by Phase-Contrast Magnetic Resonance Imaging Combined With Sensitivity Encoding , 2003, Circulation.

[23]  S J Riederer,et al.  Improved centric phase encoding orders for three‐dimensional magnetization‐prepared mr angiography , 1996, Magnetic resonance in medicine.

[24]  J. Kaufman,et al.  Pedal arterial imaging. , 1997, Journal of vascular and interventional radiology : JVIR.

[25]  J M Wardlaw,et al.  Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. , 2000, Radiology.

[26]  R. Muthupillai,et al.  Time‐resolved contrast‐enhanced magnetic resonance angiography in pediatric patients using sensitivity encoding , 2003, Journal of magnetic resonance imaging : JMRI.

[27]  S J Riederer,et al.  Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. , 1997, Radiology.

[28]  Yasuo Nakajima,et al.  Coil sensitivity encoding in MR imaging: advantages and disadvantages in clinical practice. , 2002, AJR. American journal of roentgenology.

[29]  H H Quick,et al.  High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[30]  T. Metens,et al.  Intracranial aneurysms: detection with gadolinium-enhanced dynamic three-dimensional MR angiography-initial results. , 2000, Radiology.

[31]  Alan H Wilman,et al.  Application of magnetization transfer at 3.0 T in three‐dimensional time‐of‐flight magnetic resonance angiography of the intracranial arteries , 2002, Journal of magnetic resonance imaging : JMRI.

[32]  G. Schuierer,et al.  Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography , 1998, Neuroradiology.

[33]  U Klose,et al.  The effects of linearly increasing flip angles on 3D inflow MR angiography , 1994, Magnetic resonance in medicine.

[34]  A. Wilman,et al.  Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. , 2002, Magnetic resonance imaging.

[35]  D. Peters,et al.  Undersampled projection reconstruction applied to MR angiography , 2000, Magnetic resonance in medicine.

[36]  Daniel K Sodickson,et al.  Self‐calibrating parallel imaging with automatic coil sensitivity extraction , 2002, Magnetic resonance in medicine.

[37]  S J Riederer,et al.  Performance of an elliptical centric view order for signal enhancement and motion artifact suppression in breath‐hold three‐dimensional gradient echo imaging , 1997, Magnetic resonance in medicine.

[38]  A. Imparato,et al.  Angiographic criteria for successful tibial arterial reconstructions. , 1973, Surgery.

[39]  Raja Muthupillai,et al.  Implications of SENSE MR in routine clinical practice. , 2003, European journal of radiology.

[40]  J V Hajnal,et al.  Detection and elimination of motion artifacts by regeneration of k‐space , 2002, Magnetic resonance in medicine.

[41]  Walter F Block,et al.  Time‐resolved contrast‐enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory , 2002, Magnetic resonance in medicine.

[42]  M. Prince,et al.  Renal MR angiography. , 1999, Magnetic Resonance Imaging Clinics of North America.

[43]  J. V. van Engelshoven,et al.  Contrast‐enhanced peripheral MR angiography at 3.0 Tesla: Initial experience with a whole‐body scanner in healthy volunteers , 2003, Journal of magnetic resonance imaging : JMRI.

[44]  Mark Bydder,et al.  Generalized SMASH imaging , 2002, Magnetic resonance in medicine.

[45]  P. Boesiger,et al.  Contrast‐enhanced 3D MRA using SENSE , 2000, Journal of magnetic resonance imaging : JMRI.

[46]  Richard Frayne,et al.  3D Time‐resolved contrast‐enhanced MR DSA: Advantages and tradeoffs , 1998, Magnetic resonance in medicine.

[47]  W. Eubank,et al.  Utilizing SENSE to achieve lower station sub‐millimeter isotropic resolution and minimal venous enhancement in peripheral MR angiography , 2002, Journal of magnetic resonance imaging : JMRI.

[48]  G. Toniolo,et al.  Adverse reactions to contrast media: a report from the Committee on Safety of Contrast Media of the International Society of Radiology. , 1980, Radiology.

[49]  R. Edelman,et al.  Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: A pilot study. , 2000, Radiology.

[50]  James C Carr,et al.  Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution--initial results. , 2002, Radiology.

[51]  R. Westerhausen,et al.  [High resolution contrast-enhanced 3D MR-angiography of renal arteries using parallel imaging (SENSE)]. , 2003, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[52]  Horst Urbach,et al.  Randomly segmented central k-space ordering in high-spatial-resolution contrast-enhanced MR angiography of the supraaortic arteries: initial experience. , 2002, Radiology.

[53]  N. Matsunaga,et al.  Magnetic resonance imaging features of aortic diseases. , 2003, Topics in magnetic resonance imaging : TMRI.

[54]  J S Lewin,et al.  High Resolution, Magnetization Transfer Saturation, Variable Flip Angle, Time‐of‐Flight MRA in the Detection of Intracranial Vascular Stenoses , 1995, Journal of computer assisted tomography.

[55]  M. Salvioni,et al.  Renal artery stenosis: value of screening with three-dimensional phase-contrast MR angiography with a phased-array multicoil. , 1996, Radiology.

[56]  Horst Urbach,et al.  Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging--initial experience. , 2003, Radiology.

[57]  J. V. van Engelshoven,et al.  Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis , 2002 .

[58]  J. Barentsz,et al.  Accuracy of normal-dose contrast-enhanced MR angiography in assessing renal artery stenosis and accessory renal arteries. , 2000, AJR. American journal of roentgenology.

[59]  S J Riederer,et al.  Theoretical limits of spatial resolution in elliptical‐centric contrast‐enhanced 3D‐MRA , 1999, Magnetic resonance in medicine.

[60]  S. Riederer,et al.  Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. , 2004, AJNR. American journal of neuroradiology.

[61]  G J Kemerink,et al.  Motion of the proximal renal artery during the cardiac cycle , 2000, Journal of magnetic resonance imaging : JMRI.

[62]  J. V. van Engelshoven,et al.  Motion of the distal renal artery during three‐dimensional contrast‐enhanced breath‐hold MRA , 2002, Journal of magnetic resonance imaging : JMRI.

[63]  H. Kauczor,et al.  MRI for the diagnosis of pulmonary embolism , 2002, Journal of magnetic resonance imaging : JMRI.

[64]  Michael Bock,et al.  Partially Parallel Three‐Dimensional Magnetic Resonance Imaging for the Assessment of Lung Perfusion – Initial Results , 2003, Investigative radiology.

[65]  T M Grist,et al.  Contrast-Enhanced magnetic resonance angiography of the carotid bifurcation using the time-resolved imaging of contrast kinetics (TRICKS) technique. , 2001, Topics in magnetic resonance imaging : TMRI.

[66]  M. Viergever,et al.  Limits to the accuracy of vessel diameter measurement in MR angiography , 1998, Journal of magnetic resonance imaging : JMRI.

[67]  M R Prince,et al.  Optimizing three-dimensional gadolinium-enhanced magnetic resonance angiography. Original investigation. , 1998, Investigative radiology.

[68]  M. Prince Gadolinium-enhanced MR aortography. , 1990, Radiology.

[69]  J. V. van Engelshoven,et al.  Three‐dimensional contrast‐enhanced moving‐bed infusion‐tracking (MoBI‐track) peripheral MR angiography with flexible choice of imaging parameters for each field of view , 2000, Journal of magnetic resonance imaging : JMRI.

[70]  G. Cosnard,et al.  Diagnosis of intracranial aneurysms: accuracy of MR angiography at 0.5 T. , 1998, AJNR. American journal of neuroradiology.

[71]  F. Korosec,et al.  Time-resolved three-dimensional contrast-enhanced MR angiography of the peripheral vessels. , 2002, Radiology.

[72]  C L Dumoulin,et al.  Three‐dimensional phase contrast angiography , 1989, Magnetic resonance in medicine.

[73]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[74]  J. Bakker,et al.  Renal artery stenosis and accessory renal arteries: accuracy of detection and visualization with gadolinium-enhanced breath-hold MR angiography. , 1998, Radiology.

[75]  P. Batchelor,et al.  International Society for Magnetic Resonance in Medicine , 1997 .

[76]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[77]  D Chien,et al.  Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography. , 1999, AJNR. American journal of neuroradiology.

[78]  Y Horikawa,et al.  Intracranial aneurysms: diagnostic accuracy of three-dimensional, Fourier transform, time-of-flight MR angiography. , 1994, Radiology.

[79]  Hiroto Hatabu,et al.  Time‐resolved contrast‐enhanced pulmonary MR angiography using sensitivity encoding (SENSE) , 2003, Journal of magnetic resonance imaging : JMRI.

[80]  J M Wardlaw,et al.  Intracranial aneurysms: CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort. , 2001, Radiology.

[81]  R. Stollberger,et al.  Improved diffusion‐weighted single‐shot echo‐planar imaging (EPI) in stroke using sensitivity encoding (SENSE) , 2001, Magnetic resonance in medicine.

[82]  S J Riederer,et al.  Dependence of venous enhancement on the field of view in 3D contrast‐enhanced MRA using the elliptical centric view order , 2001, Magnetic resonance in medicine.

[83]  Herbert Köstler,et al.  Auto‐SENSE perfusion imaging of the whole human heart , 2003, Journal of magnetic resonance imaging : JMRI.

[84]  M Forsting,et al.  [Intracranial aneurysms: pathogenesis, rupture risk, treatment options]. , 2003, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[85]  M. Takahashi,et al.  MR angiography of intracranial aneurysms: a comparison of 0.5 T and 1.5 T. , 1997, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[86]  D. Hadizadeh,et al.  Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[87]  Morphology and hemodynamics in dissection of the descending aorta. Assessment with MR imaging. , 2000, Acta radiologica.

[88]  A. Kassner,et al.  Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. , 1999, Radiology.

[89]  D. Nichols,et al.  Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms: importance of aneurysm size. , 1994, AJNR. American journal of neuroradiology.

[90]  M. Bernstein,et al.  High‐resolution intracranial and cervical MRA at 3.0T: Technical considerations and initial experience , 2001, Magnetic resonance in medicine.

[91]  T M Grist,et al.  Carotid bifurcation: evaluation of time-resolved three-dimensional contrast-enhanced MR angiography. , 2001, Radiology.

[92]  K. Bolz [Complications of angiography]. , 1988, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[93]  S J Riederer,et al.  High-spatial-resolution contrast-enhanced MR angiography of the renal arteries: a prospective comparison with digital subtraction angiography. , 2001, Radiology.

[94]  D L Parker,et al.  MR angiography by multiple thin slab 3D acquisition , 1991, Magnetic resonance in medicine.

[95]  Wei Li,et al.  On Improving Temporal and Spatial Resolution in 3D Contrast-enhanced Body MRA with Parallel Imaging , 2003 .

[96]  T L Chenevert,et al.  The effects of time varying intravascular signal intensity and k‐space acquisition order on three‐dimensional MR angiography image quality , 1996, Journal of magnetic resonance imaging : JMRI.

[97]  T L Chenevert,et al.  The effects of incomplete breath‐holding on 3D MR Image Quality , 1997, Journal of magnetic resonance imaging : JMRI.

[98]  F. Pereles,et al.  Abdominal Magnetic Resonance Angiography: Principles and Practical Applications , 2001, Topics in magnetic resonance imaging : TMRI.

[99]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[100]  X. Golay,et al.  Time-resolved contrast-enhanced carotid MR angiography using sensitivity encoding (SENSE). , 2001, AJNR. American journal of neuroradiology.

[101]  Christina J. Herold,et al.  Pulmonary magnetic resonance angiography , 1999, European Radiology.

[102]  Bob S. Hu,et al.  Real‐time color flow MRI , 2000, Magnetic resonance in medicine.

[103]  R Frayne,et al.  Time‐resolved contrast‐enhanced 3D MR angiography , 1996, Magnetic resonance in medicine.