A variation of supplemented modules

Over a general ring, an R-module is w-supplemented if and only if amply w-supplemented. It is proved that over a local Dedekind domain, all modules are w-supplemented and over a non-local Dedekind domain, an R-module M is w-supplemented if and only if Soc(M)\ll M or M=S0 \oplus (\bigoplusi \in I K), where S0 is a torsion, semisimple submodule of M and K is the field of quotients of R.

[1]  E. Türkmen Rad-⊕-Supplemented Modules , 2013 .

[2]  R. Tribak FINITELY GENERATED δ-SUPPLEMENTED MODULES ARE AMPLY δ-SUPPLEMENTED , 2012, Bulletin of the Australian Mathematical Society.

[3]  Li Ming-quan Cofinitely δ--supplemented modules , 2012 .

[4]  R. Alizade,et al.  Extensions of weakly supplemented modules , 2008 .

[5]  C. Lomp,et al.  ON A RECENT GENERALIZATION OF SEMIPERFECT RINGS , 2008, 0802.0477.

[6]  Gokhan Bilhan,et al.  TOTALLY COFINITELY SUPPLEMENTED MODULES , 2007 .

[7]  Nanqing Ding,et al.  GENERALIZED SUPPLEMENTED MODULES , 2006 .

[8]  H. Çalışıcı,et al.  ⊕-Cofinitely Supplemented Modules , 2004 .

[9]  R. Alizade,et al.  Cofinitely Weak Supplemented Modules , 2003 .

[10]  R. Tribak,et al.  ON SOME PROPERTIES OF ⊕-SUPPLEMENTED MODULES , 2003 .

[11]  Gokhan Bilhan,et al.  MODULES WHOSE MAXIMAL SUBMODULES HAVE SUPPLEMENTS , 2001 .

[12]  D. Keskin On lifting modules , 2000 .

[13]  W. Xue,et al.  Rings Whose Modules Are ⊕ -Supplemented , 1999 .

[14]  A. Harmanci,et al.  On ⌖-supplemented Modules , 1999 .

[15]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[16]  H. Zöschinger Komplemente als direkte Summanden II , 1982 .

[17]  H. Zöschinger Komplemente für zyklische Moduln über Dedekindringen , 1979 .

[18]  H. Zöschinger Komplementierte Moduln über Dedekindringen , 1974 .

[19]  H. Zöschinger Komplemente als direkte Summanden , 1974 .

[20]  F. Kasch,et al.  Eine Kennzeichnung Semi-perfekter Moduln , 1966, Nagoya Mathematical Journal.