A variation of supplemented modules
暂无分享,去创建一个
[1] E. Türkmen. Rad-⊕-Supplemented Modules , 2013 .
[2] R. Tribak. FINITELY GENERATED δ-SUPPLEMENTED MODULES ARE AMPLY δ-SUPPLEMENTED , 2012, Bulletin of the Australian Mathematical Society.
[3] Li Ming-quan. Cofinitely δ--supplemented modules , 2012 .
[4] R. Alizade,et al. Extensions of weakly supplemented modules , 2008 .
[5] C. Lomp,et al. ON A RECENT GENERALIZATION OF SEMIPERFECT RINGS , 2008, 0802.0477.
[6] Gokhan Bilhan,et al. TOTALLY COFINITELY SUPPLEMENTED MODULES , 2007 .
[7] Nanqing Ding,et al. GENERALIZED SUPPLEMENTED MODULES , 2006 .
[8] H. Çalışıcı,et al. ⊕-Cofinitely Supplemented Modules , 2004 .
[9] R. Alizade,et al. Cofinitely Weak Supplemented Modules , 2003 .
[10] R. Tribak,et al. ON SOME PROPERTIES OF ⊕-SUPPLEMENTED MODULES , 2003 .
[11] Gokhan Bilhan,et al. MODULES WHOSE MAXIMAL SUBMODULES HAVE SUPPLEMENTS , 2001 .
[12] D. Keskin. On lifting modules , 2000 .
[13] W. Xue,et al. Rings Whose Modules Are ⊕ -Supplemented , 1999 .
[14] A. Harmanci,et al. On ⌖-supplemented Modules , 1999 .
[15] Tsit Yuen Lam,et al. Lectures on modules and rings , 1998 .
[16] H. Zöschinger. Komplemente als direkte Summanden II , 1982 .
[17] H. Zöschinger. Komplemente für zyklische Moduln über Dedekindringen , 1979 .
[18] H. Zöschinger. Komplementierte Moduln über Dedekindringen , 1974 .
[19] H. Zöschinger. Komplemente als direkte Summanden , 1974 .
[20] F. Kasch,et al. Eine Kennzeichnung Semi-perfekter Moduln , 1966, Nagoya Mathematical Journal.