Concerted regulation of gonad differentiation by transcription factors and growth factors.

It is well known that signals from growth factors regulate gene transcription thus initiating certain steps of cellular and tissue differentiation during development. In gonad differentiation several transcription factors have been identified as the genes underlying human diseases displaying gonadal defects and as the genes necessary for gonad differentiation as demonstrated by gene disruption studies. In addition, one of the growth factors, WNT4, is known to be involved in gonadal differentiation. However, it remains unclear which gene is directly downstream of the WNT4 signal. We have recently demonstrated that Dax1 (NR0B1) gene transcription is significantly up-regulated by the presence of SF1 (NR5A1). Functional analysis showed that DAX1 acts as a repressor against SF1 through direct interaction between the repeated sequences at the N-terminus of DAX1 and a ligand-binding domain of SF1. Considering that the expressions of these factors during gonad differentiation show a sexually dimorphic pattern, it is likely that the Dax1 gene transcription is up-regulated by WNT4 signal and thereafter DAX1 suppresses the genes downstream of SF1 such as Amh and steroidogenic genes in female gonads.