A 250 m Direct Time-of-Flight Ranging System Based on a Synthesis of Sub-Ranging Images and a Vertical Avalanche Photo-Diodes (VAPD) CMOS Image Sensor

We have developed a direct time-of-flight (TOF) 250 m ranging Complementary Metal Oxide Semiconductor (CMOS) image sensor (CIS) based on a 688 × 384 pixels array of vertical avalanche photodiodes (VAPD). Each pixel of the CIS comprises VAPD with a standard four transistor pixel circuit equipped with an analogue capacitor to accumulate or count avalanche pulses. High power near infrared (NIR) short (<50 ns) and repetitive (6 kHz) laser pulses are illuminated through a diffusing optics. By globally gating the VAPD, each pulse is counted in the in-pixel counter enabling extraction of sub-photon level signal. Depth map imaging with a 10 cm lateral resolution is realized from 1 m to 250 m range by synthesizing subranges images of photon counts. Advantages and limitation of an in-pixel circuit are described. The developed CIS is expected to supersede insufficient resolution of the conventional light detection and ranging (LiDAR) systems and the short range of indirect CIS TOF.

[1]  N. Teranishi Required Conditions for Photon-Counting Image Sensors , 2012, IEEE Transactions on Electron Devices.

[2]  M. Gersbach,et al.  A 128 $\times$ 128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array , 2008, IEEE Journal of Solid-State Circuits.

[3]  Andrew J. Holmes,et al.  320×240 oversampled digital single photon counting image sensor , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[4]  Matteo Perenzoni,et al.  6.5 A 64×64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[5]  Andrew D. Payne,et al.  A 0.13 μm CMOS System-on-Chip for a 512 × 424 Time-of-Flight Image Sensor With Multi-Frequency Photo-Demodulation up to 130 MHz and 2 GS/s ADC , 2015, IEEE Journal of Solid-State Circuits.

[6]  Shigetaka Kasuga,et al.  6.6 A 1280×720 single-photon-detecting image sensor with 100dB dynamic range using a sensitivity-boosting technique , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[7]  T. Zwick,et al.  Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  Matteo Perenzoni,et al.  Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors , 2016, Sensors.

[9]  Masaru Ogawa,et al.  Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems , 2016, Sensors.

[10]  Shigetaka Kasuga,et al.  A 220 M-Range Direct Time-of-Flight 688 × 384 CMOS Image Sensor with Sub-Photon Signal Extraction (SPSE) Pixels Using Vertical Avalanche Photo-Diodes and 6 KHz Light Pulse Counters , 2018, 2018 IEEE Symposium on VLSI Circuits.