Enhancing elastocaloric effect of NiTi alloy by concentration-gradient engineering

[1]  S. Yao,et al.  Enhancing cooling performance of NiTi elastocaloric tube refrigerant via internal grooving , 2022, Applied Thermal Engineering.

[2]  G. Kang,et al.  Cyclic degeneration of elastocaloric effect for NiTi shape memory alloy: Experimental observation and constitutive model , 2022, International Journal of Solids and Structures.

[3]  Qingyuan Wang,et al.  Improved elastocaloric effect of NiTi shape memory alloys via microstructure engineering: A phase field simulation , 2022, International Journal of Mechanical Sciences.

[4]  F. Ren,et al.  Ultrahigh cycle fatigue of nanocrystalline NiTi tubes for elastocaloric cooling , 2022, Applied Materials Today.

[5]  Hao Li,et al.  Irradiation engineered lattice distortion in Ti-Ni shape memory alloy achieving enhanced elastocaloric effect , 2022, Journal of Alloys and Compounds.

[6]  M. Qian,et al.  Enhanced elastocaloric stability in NiTi alloys under shear stress , 2022, Materials Science and Engineering: A.

[7]  Wei Liu,et al.  Toward tunable mechanical behavior and enhanced elastocaloric effect in NiTi alloy by gradient structure , 2021, Acta Materialia.

[8]  I. Takeuchi,et al.  Materials, physics and systems for multicaloric cooling , 2021, Nature Reviews Materials.

[9]  G. Kang,et al.  Phase field study on the microscopic mechanism of grain size dependent cyclic degradation of super-elasticity and shape memory effect in nano-polycrystalline NiTi alloys , 2021 .

[10]  G. Fang,et al.  Elastocaloric cooling of shape memory alloys: A review , 2021 .

[11]  M. A. Zaeem,et al.  Design of NiTi-based shape memory microcomposites with enhanced elastocaloric performance by a fully thermomechanical coupled phase-field model , 2021 .

[12]  W. Cai,et al.  Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting , 2021 .

[13]  Muhammad Imran,et al.  Reduced dimensions elastocaloric materials: A route towards miniaturized refrigeration , 2021 .

[14]  G. Kang,et al.  Phase field simulation on the super-elasticity, elastocaloric and shape memory effect of geometrically graded nano-polycrystalline NiTi shape memory alloys , 2021, International Journal of Mechanical Sciences.

[15]  Wei Liu,et al.  Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing , 2021 .

[16]  M. A. Zaeem,et al.  An Asymmetric Elasto-Plastic Phase-Field Model for Shape Memory Effect, Pseudoelasticity and Thermomechanical Training in Polycrystalline Shape Memory Alloys , 2020 .

[17]  G. Kang,et al.  Phase field simulation on the grain size dependent super-elasticity and shape memory effect of nanocrystalline NiTi shape memory alloys , 2020 .

[18]  M. Imran,et al.  Recent developments on the cyclic stability in elastocaloric materials , 2020 .

[19]  Hong Chen,et al.  Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy , 2020 .

[20]  M. Brojan,et al.  Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling , 2020, Applied Materials Today.

[21]  Shaohui Li,et al.  Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys , 2020 .

[22]  Jia-Jyun Shen,et al.  Mechanical and elastocaloric effect of aged Ni-rich TiNi shape memory alloy under load-controlled deformation , 2020 .

[23]  Yunzhi Wang,et al.  Linear-superelastic metals by controlled strain release via nanoscale concentration-gradient engineering , 2020 .

[24]  G. Kang,et al.  Phase field simulation on the cyclic degeneration of one-way shape memory effect of NiTi shape memory alloy single crystal , 2020 .

[25]  C. Aprea,et al.  A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019 , 2019, International Journal of Refrigeration.

[26]  K. Zhou,et al.  A non-isothermal phase field study of the shape memory effect and pseudoelasticity of polycrystalline shape memory alloys , 2019, Computational materials science.

[27]  H. Yin,et al.  Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling , 2019, Applied Physics Letters.

[28]  Lin Zhou,et al.  Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing , 2019, Science.

[29]  Hong Chen,et al.  Orientation dependence of elastocaloric effect in an aged Ni-rich Ti-Ni alloy , 2019, Scripta Materialia.

[30]  M. Imran,et al.  Elastocaloric effects related to B2↔R and B2↔B19′ martensite transformations in nanocrystalline Ni50.5Ti49.5 microwires , 2019, Journal of Alloys and Compounds.

[31]  C. Cazorla Novel mechanocaloric materials for solid-state cooling applications , 2019, Applied Physics Reviews.

[32]  Xin Lin,et al.  Large superelastic recovery and elastocaloric effect in as-deposited additive manufactured Ni50.8Ti49.2 alloy , 2019, Applied Physics Letters.

[33]  J. Humbeeck,et al.  Improved functional stability of a coarse-grained Ti-50.8 at.% Ni shape memory alloy achieved by precipitation on dislocation networks , 2019, Scripta Materialia.

[34]  Hong Chen,et al.  Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement , 2019, Scripta Materialia.

[35]  K. Tsuchiya,et al.  Reversible elastocaloric effect at ultra-low temperatures in nanocrystalline shape memory alloys , 2019, Acta Materialia.

[36]  G. Kang,et al.  High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression , 2019, Scripta Materialia.

[37]  S. Joshi,et al.  The role of bimodal grain size distribution in nanocrystalline shape memory alloys , 2018, Smart Materials and Structures.

[38]  P. Collins,et al.  Microscale phase field modeling of the martensitic transformation during cyclic loading of NiTi single crystal , 2018, International Journal of Solids and Structures.

[39]  M. Brojan,et al.  Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling , 2018 .

[40]  Jun Luo,et al.  Phase field study of the microstructure evolution and thermomechanical properties of polycrystalline shape memory alloys: Grain size effect and rate effect , 2018 .

[41]  G. Kang,et al.  Phase field modeling for cyclic phase transition of NiTi shape memory alloy single crystal with super-elasticity , 2018 .

[42]  P. Zeng,et al.  In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy , 2017 .

[43]  H. Sehitoglu,et al.  Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation , 2017 .

[44]  P. Anderson,et al.  Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals , 2017 .

[45]  X. Liang,et al.  Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8Ni (at.%) alloy , 2017 .

[46]  Nailu Chen,et al.  Three-dimensional, non-isothermal phase-field modeling of thermally and stress-induced martensitic transformations in shape memory alloys , 2017 .

[47]  L. Mañosa,et al.  Materials with Giant Mechanocaloric Effects: Cooling by Strength , 2017, Advanced materials.

[48]  T. Nam,et al.  A unique “fishtail-like” four-way shape memory effect of compositionally graded NiTi , 2017 .

[49]  T. Fukuda,et al.  Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4 , 2016 .

[50]  G. Kang,et al.  Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy , 2016 .

[51]  Z. Moumni,et al.  Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy , 2016 .

[52]  Wenyi Yan,et al.  Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy , 2016 .

[53]  J. Cui,et al.  A review of elastocaloric cooling: materials, cycles and system integrations. , 2016 .

[54]  H. Sehitoglu,et al.  Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl , 2015 .

[55]  R. Ahluwalia,et al.  Simulation of grain size effects in nanocrystalline shape memory alloys , 2015 .

[56]  A. Ahadi,et al.  Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction , 2015 .

[57]  Nini Pryds,et al.  Elastocaloric effect of Ni-Ti wire for application in a cooling device , 2015 .

[58]  Xavier Moya,et al.  Too cool to work , 2015, Nature Physics.

[59]  M. Kohl,et al.  Evolution of temperature profiles in TiNi films for elastocaloric cooling , 2014 .

[60]  A. Ahadi,et al.  Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi , 2014 .

[61]  Y. Zhong,et al.  Phase-field modeling of martensitic microstructure in NiTi shape memory alloys , 2014 .

[62]  G. Kang,et al.  Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation , 2014 .

[63]  L. Cui,et al.  Transformation behavior of explosively welded TiNi/TiNi laminate after diffusion annealing and aging , 2013 .

[64]  A. Ahadi,et al.  Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size , 2013 .

[65]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[66]  Wael Zaki,et al.  Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling , 2011 .

[67]  L. Molari,et al.  A macroscale, phase-field model for shape memory alloys with non-isothermal effects: influence of strain-rate and environmental conditions on the mechanical response , 2011, 1107.5998.

[68]  Petr Šittner,et al.  Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires , 2011 .

[69]  Tongxi Yu,et al.  Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips , 2010 .

[70]  K. Dayal,et al.  Formulation of phase-field energies for microstructure in complex crystal structures , 2010 .

[71]  Y. He,et al.  Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates , 2010 .

[72]  Y. He,et al.  Effects of structural and material length scales on stress-induced martensite macro-domain patterns in tube configurations , 2009 .

[73]  Y. Shu,et al.  Multivariant model of martensitic microstructure in thin films , 2008 .

[74]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[75]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[76]  S. Nemat-Nasser,et al.  Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures , 2006 .

[77]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[78]  W. Crone,et al.  Surface characterization of NiTi modified by plasma source ion implantation , 2002 .

[79]  Stelios Kyriakides,et al.  On the nucleation and propagation of phase transformation fronts in a NiTi alloy , 1997 .

[80]  Yunzhi Wang,et al.  Three-dimensional field model and computer modeling of martensitic transformations , 1997 .

[81]  Bertotti Energetic and thermodynamic aspects of hysteresis. , 1996, Physical review letters.

[82]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[83]  F. Falk Model free energy, mechanics, and thermodynamics of shape memory alloys , 1980 .

[84]  Hongyan Lin,et al.  Effects of grain size and partial amorphization on elastocaloric cooling performance of nanostructured NiTi , 2022, Scripta Materialia.

[85]  J. Humbeeck,et al.  FABRICATION AND CHARACTERIZATION OF FUNCTIONALLY GRADED Ni-Ti MULTILAYER THIN FILMS , 2009 .

[86]  Shuichi Miyazaki,et al.  Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys , 1986 .