Chapter 21 Random and changing coefficient models

Publisher Summary This chapter discusses that the standard linear regression model has been an attractive model to use in econometrics. If econometricians can uncover stable economic relations that satisfy at least approximately the assumptions of this model, they deserve the credit and the convenience of using it. Sometimes, however, econometricians are not lucky or ingenious enough to specify a stable regression relationship, and the relationship being studied gradually changes. Under such circumstances, an option is to specify a linear regression model with stochastically evolving coefficients. The chapter also reviews that for the purpose of parameter estimation, this model takes into account the possibility that the coefficients may be time dependent and provides estimates of these coefficients at different points of time. For the purpose of forecasting, this model has an advantage over the standard regression model in utilizing the estimates of the most up-to-date coefficients. From the viewpoint of hypothesis testing, this model serves as a viable alternative to the standard regression model for the purpose of checking the constancy of the coefficients of the latter model.

[1]  L. Tesfatsion A new approach to filtering and adaptive control , 1978 .

[2]  J. Cooper,et al.  Time-Varying Regression Coefficients: A Mixed Estimation Approach and Operational Limitations of The General Markov Structure , 1973 .

[3]  A. Zellner Estimation of Regression Relationships Containing Unobservable Independent Variables , 1970 .

[4]  Adrian Pagan,et al.  A note on the extraction of components from time series , 1975 .

[5]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[6]  Edward C. Prescott,et al.  Tests of an Adaptive Regression Model , 1973 .

[7]  Richard E. Quandt,et al.  The Estimation of Structural Shifts by Switching Regressions , 1973 .

[8]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[9]  Leigh Tesfatsion,et al.  Direct Updating of Intertemporal Criterion Functions for a Class of Adaptive Control Problems , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  David A. Belsley,et al.  Time-Varying Parameter Structures: An Overview , 1973 .

[11]  David A. Belsley On the Determination of Systematic Parameter Variation in the Linear Regression Model , 1973 .

[12]  Robert F. Engle,et al.  Estimating Structural Models of Seasonality , 1978 .

[13]  C. Gouriéroux,et al.  Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters , 1982 .

[14]  P. A. V. B. Swamy,et al.  Criteria Constraints and Multicollinearity in Random Coefficient Regression Models , 1973 .

[15]  Edward C. Prescott,et al.  Estimation in the Presence of Stochastic Parameter Variation , 1976 .

[16]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[17]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[18]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[19]  Andrew Harvey,et al.  An Algorithm for Exact Maximum Likelihood Estimation of Autoregressive–Moving Average Models by Means of Kaiman Filtering , 1980 .

[20]  Richard E. Quandt,et al.  The Econometrics of Structural Change. , 1977 .

[21]  G. Siouris,et al.  Optimum systems control , 1979, Proceedings of the IEEE.

[22]  H. Chernoff On the Distribution of the Likelihood Ratio , 1954 .

[23]  E. Hannan The identification of vector mixed autoregressive-moving average system , 1969 .

[24]  Adrian Pagan,et al.  Some identification and estimation results for regression models with stochastically varying coefficients , 1980 .

[25]  Lynn Roy LaMotte,et al.  An Exact Test for the Presence of Random Walk Coefficients in a Linear Regression Model , 1978 .

[26]  Andrew Harvey,et al.  The Estimation of Regression Models with Time-Varying Parameters , 1982 .

[27]  L. Taylor The Existence of Optimal Distributed Lags , 1970 .

[28]  Andrew Harvey,et al.  A Simple Test for Serial Correlation in Regression Analysis , 1974 .

[29]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[30]  Harvey The Estimation of Time-Varying Parameters from Panel Data , 1978 .

[31]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[32]  Andrew Harvey,et al.  Maximum likelihood estimation of regression models with autoregressive-moving average disturbances , 1979 .

[33]  Kenneth D. Garbade,et al.  Two Methods for Examining the Stability of Regression Coefficients , 1977 .

[34]  Tore Schweder,et al.  Some “Optimal” Methods to Detect Structural Shift or Outliers in Regression , 1976 .

[35]  Barr Rosenberg,et al.  A Survey of Stochastic Parameter Regression , 1973 .

[36]  S. Arora,et al.  Error Components Regression Models and Their Applications , 1973 .

[37]  Michio Hatanaka A NOTE ON THE APPLICATION OF THE KALMAN FILTER TO REGRESSION MODELS WITH SOME PARAMETERS VARYING OVER TIME AND OTHERS UNVARYING , 1980 .

[38]  G. Chow,et al.  Econometric analysis by control methods , 1983 .

[39]  Andrew Harvey,et al.  Testing for functional misspecification in regression analysis , 1977 .

[40]  P. A. V. B. Swamy,et al.  Statistical Inference in Random Coefficient Regression Models , 1971 .

[41]  William J. Palm Modeling, analysis, and control of dynamic systems , 1983 .

[42]  P. A. V. B. Swamy,et al.  Bayesian and Non-Bayesian Analysis of Switching Regressions and of Random Coefficient Regression Models , 1975 .

[43]  A Test for Systematic Variation in Regression Coefficients , 1973 .

[44]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[45]  Kent D. Wall,et al.  Time-varying models in econometrics: Identifiability and estimation , 1977 .

[46]  S. D. Silvey,et al.  The Lagrangian Multiplier Test , 1959 .

[47]  A. Sarris,et al.  A Bayesian Approach To Estimation Of Time-Varying Regression Coefficients , 1973 .

[48]  The Applicability of the Kalman Filter in the Determination of Systematic Parameter Variation , 1973 .

[49]  Edward C. Prescott,et al.  An Adaptive Regression Model , 1973 .

[50]  P. A. P. Moran,et al.  On asymptotically optimal tests of composite hypotheses , 1970 .

[51]  Thomas F. Cooley,et al.  A Note on Optimal Smoothing for Time Varying Coefficient Problems , 1976 .

[52]  Paul N. Rappoport,et al.  Relative efficiencies of some simple Bayes estimators of coefficients in a dynamic equation with serially correlated errors - II , 1978 .

[53]  Harry H. Kelejian,et al.  Random Parameters in a Simultaneous Equation Framework: Identification and Estimation , 1974 .

[54]  D. B. Duncan,et al.  Linear Dynamic Recursive Estimation from the Viewpoint of Regression Analysis , 1972 .

[55]  Barr Rosenberg. The Estimation of Stationary Stochastic Regression Parameters Reexamined , 1972 .

[56]  R. K. Mehra,et al.  Identification of stochastic linear dynamic systems using Kalman filter representation , 1971 .

[57]  Peter A. Tinsley,et al.  Linear prediction and estimation methods for regression models with stationary stochastic coefficients , 1980 .

[58]  Donald T. Sant Generalized Least Squares Applied to Time Varying Parameter Models , 1977 .