Towards derived equivalence classification of the cluster-tilted algebras of Dynkin type D

[1]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[2]  Sefi Ladkani,et al.  Derived Equivalence Classification of the Cluster-Tilted Algebras of Dynkin Type E , 2009, Algebras and Representation Theory.

[3]  Sefi Ladkani On Jacobian algebras from closed surfaces , 2012, 1207.3778.

[4]  Sefi Ladkani Hochschild cohomology of the cluster-tilted algebras of finite representation type , 2012, 1205.0799.

[5]  Janine Bastian Mutation classes of ˜ A n −quivers and derived equivalence classification of cluster tilted algebras of type ˜ A n , 2012 .

[6]  Sefi Ladkani Perverse equivalences, BB-tilting, mutations and applications , 2010, 1001.4765.

[7]  B. Keller,et al.  Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.

[8]  Ibrahim Assem,et al.  Gentle algebras arising from surface triangulations , 2009, 0903.3347.

[9]  Janine Bastian,et al.  Mutation classes of $\tilde{A}_n$-quivers and derived equivalence classification of cluster tilted algebras of type $\tilde{A}_n$ , 2009, 0901.1515.

[10]  Aslak Bakke Buan,et al.  The Number of Elements in the Mutation Class of a Quiver of Type Dn , 2008, Electron. J. Comb..

[11]  Dagfinn F. Vatne,et al.  The Mutation Class of D n Quivers , 2008, 0810.4789.

[12]  G. Murphy Derived equivalence classification of m-cluster tilted algebras of type An , 2008, 0807.3840.

[13]  I. Reiten,et al.  Mutation of cluster-tilting objects and potentials , 2008, 0804.3813.

[14]  D. Labardini-Fragoso,et al.  Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.

[15]  Sefi Ladkani On derived equivalences of categories of sheaves over finite posets , 2006, math/0610685.

[16]  S. Al-Nofayee Equivalences of derived categories for selfinjective algebras , 2007 .

[17]  C. Ringel The self-injective cluster-tilted algebras , 2007, 0705.3903.

[18]  J. Weyman,et al.  Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.

[19]  A. B. Buan,et al.  Derived equivalence classification for cluster-tilted algebras of type An , 2007, math/0701612.

[20]  Claire Amiot ON THE STRUCTURE OF TRIANGULATED CATEGORIES WITH FINITELY MANY INDECOMPOSABLES , 2006, math/0612141.

[21]  D. Thurston,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.

[22]  R. Schiffler A geometric model for cluster categories of type Dn , 2006, math/0608264.

[23]  I. Reiten,et al.  Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.

[24]  Robert J. Marsh,et al.  Cluster-tilted algebras of finite representation type , 2005, math/0509198.

[25]  T. Holm Cartan determinants for gentle algebras , 2005 .

[26]  B. Keller On triangulated orbit categories , 2005, Documenta Mathematica.

[27]  A. Skowroński,et al.  Weakly symmetric algebras of Euclidean type , 2005 .

[28]  R. Schiffler,et al.  Quivers with Relations and Cluster Tilted Algebras , 2004, math/0411238.

[29]  I. Reiten,et al.  Cluster-tilted algebras , 2004, math/0402075.

[30]  I. Reiten,et al.  Tilting theory and cluster combinatorics , 2004, math/0402054.

[31]  R. Schiffler,et al.  Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.

[32]  D. Djoković,et al.  An algorithm that carries a square matrix into its transpose by an involutory congruence transformation , 2003 .

[33]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[34]  H. Asashiba,et al.  The Derived Equivalence Classification of Representation-Finite Selfinjective Algebras , 1999 .

[35]  H. Lenzing Coxeter Transformations associated with Finite Dimensional Algebras , 1999 .

[36]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[37]  Jeremy Rickard,et al.  Morita Theory for Derived Categories , 1989 .

[38]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[39]  E. Yip,et al.  Congruence and conjunctivity of matrices to their adjoints , 1981 .

[40]  R. Gow,et al.  The equivalence of an invertible matrix to its transpose , 1980 .

[41]  M. C. R. Butler,et al.  Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors , 1980 .