Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns

Abstract This paper proposes an efficient numerical model for the simulation of the behavior of slender circular concrete-filled tubular columns subjected to eccentric axial load with single curvature, for the cases of both normal and high strength concrete. The paper focuses on the study of the influence that the variables affecting beam–column behavior (length and relative slenderness) and the variables affecting section behavior (diameter/thickness ratio, mechanical capacity of steel) have on the overall buckling of this type of column. An extended parametric study is carried out to propose design recommendations, primarily to establish the importance of the use of high strength concrete compared with that of normal strength concrete. The results show that for slender elements the optimum design is reached when the mechanical capacity of the steel is slightly lower than that of the concrete contribution.

[1]  Russell Q. Bridge,et al.  DESIGN OF CIRCULAR THIN-WALLED CONCRETE FILLED STEEL TUBES , 2000 .

[2]  Manuel L. Romero,et al.  A parallel procedure for nonlinear analysis of reinforced concrete three-dimensional frames , 2002 .

[3]  Enrico Spacone,et al.  FIBRE BEAM–COLUMN MODEL FOR NON‐LINEAR ANALYSIS OF R/C FRAMES: PART I. FORMULATION , 1996 .

[4]  Lin-Hai Han Tests on Concrete Filled Steel Tubular Columns with High Slenderness Ratio , 2000 .

[5]  Hanbin Ge,et al.  Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes , 2001 .

[6]  M. Joyce,et al.  Strength of Eccentrically Loaded Slender Steel Tubular Columns Filled With High-Strength Concrete , 1992 .

[7]  Lars Vabbersgaard Andersen,et al.  Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing , 2005 .

[8]  Qing Quan Liang Strength and ductility of high strength concrete-filled steel tubular beam-columns , 2009 .

[9]  Rodrigo Barreto Caldas,et al.  Numerical Analysis of Composite Steel-Concrete Columns of Arbitrary Cross Section , 2005 .

[10]  R. M. Souza Force-based Finite Element for Large Displacement Inelastic Analysis of Frames , 2000 .

[11]  S. Ivorra,et al.  A Review of Nonlinear Analysis Models for Concrete Filled Tubular Columns , 2005 .

[12]  Kamel Chaoui,et al.  An experimental behaviour of concrete-filled steel tubular columns , 2005 .

[13]  Nick Croft Innovation in Civil and Structural Engineering Computing , 1970 .

[14]  Hsuan-Teh Hu,et al.  Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination , 2005 .

[15]  Jerome F. Hajjar,et al.  Representation of Concrete-Filled Steel Tube Cross-Section Strength , 1996 .

[16]  Jerome F. Hajjar,et al.  Mixed Finite-Element Modeling of Rectangular Concrete-Filled Steel Tube Members and Frames under Static and Dynamic Loads , 2010 .

[17]  Marianne Grauers,et al.  Composite Columns of Hollow Steel Sections Filled with High Strength Concrete , 1993 .

[18]  Ashraf Ayoub,et al.  MIXED FORMULATION OF NONLINEAR STEEL-CONCRETE COMPOSITE BEAM ELEMENT , 2000 .

[19]  George D. Hatzigeorgiou,et al.  Numerical model for the behavior and capacity of circular CFT columns, Part II: Verification and extension , 2008 .

[20]  Brian Uy,et al.  Strength of concrete filled steel box columns incorporating local buckling , 2000 .

[21]  Yan Xiao,et al.  Confined Concrete-Filled Tubular Columns , 2005 .

[22]  K. F. Chung,et al.  Composite column design to Eurocode 4 : based on DD ENV 1994-1-1: 1994 Eurocode 4: design of composite steel and concrete structures: part 1.1: general rules and rules for buildings , 1994 .

[23]  Toshiaki Fujimoto,et al.  BEHAVIOR OF ECCENTRICALLY LOADED CONCRETE-FILLED STEEL TUBULAR COLUMNS , 2004 .

[24]  Qing Quan Liang Nonlinear analysis of short concrete-filled steel tubular beam–columns under axial load and biaxial bending , 2008 .

[25]  Hamid Valipour,et al.  Nonlinear static and cyclic analysis of concrete-filled steel columns , 2010 .

[26]  F. E. Richart,et al.  A study of the failure of concrete under combined compressive stresses , 1928 .

[27]  F. Filippou,et al.  Mixed formulation of nonlinear beam finite element , 1996 .

[28]  Qing Quan Liang,et al.  Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading , 2009 .

[29]  Kenji Sakino,et al.  ELASTO-PLASTIC BEHAVIOR OF CONCRETE FILLED SQUARE STEEL TUBULAR BEAM-COLUMNS , 1979 .

[30]  Comite Euro-International du Beton,et al.  CEB-FIP Model Code 1990 , 1993 .

[31]  Robert L. Taylor,et al.  A mixed finite element method for beam and frame problems , 2003 .

[32]  Hsuan-Teh Hu,et al.  NONLINEAR ANALYSIS OF AXIALLY LOADED CONCRETE-FILLED TUBE COLUMNS WITH CONFINEMENT EFFECT , 2003 .

[33]  George D. Hatzigeorgiou,et al.  Numerical model for the behavior and capacity of circular CFT columns, Part I. Theory , 2008 .

[34]  Manuel L. Romero,et al.  Experimental study of high strength concrete-filled circular tubular columns under eccentric loading , 2011 .

[35]  Hiroyuki Nakahara,et al.  ANALYTICAL MODEL FOR COMPRESSIVE BEHAVIOR OF CONCRETE FILLED SQUARE STEEL TUBULAR COLUMNS , 1999 .

[36]  Mathias Johansson,et al.  Composite Action and Confinement Effects in Tubular Steel-Concrete Columns , 2002 .

[37]  B. Vijaya Rangan,et al.  Influence of Interfacial Shear Transfer on Behavior of Concrete-Filled Steel Tubular Columns , 1999 .

[38]  Suchart Limkatanyu,et al.  Reinforced Concrete Frame Element with Bond Interfaces. I: Displacement-Based, Force-Based, and Mixed Formulations , 2002 .

[39]  M. A. Saadeghvaziri,et al.  NONLINEAR RESPONSE OF CONCRETE-FILLED STEEL TUBULAR COLUMNS UNDER AXIAL LOADING , 1999 .

[40]  Sherif El-Tawil,et al.  Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art , 2004 .

[41]  Mark A. Bradford,et al.  Second Order Nonlinear Inelastic Analysis of Composite Steel–Concrete Members. I: Theory , 2006 .

[42]  F. Filippou,et al.  Geometrically Nonlinear Flexibility-Based Frame Finite Element , 1998 .

[43]  Jerome F. Hajjar,et al.  A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip , 1998 .

[44]  Richard Sause,et al.  DEVELOPMENT AND VALIDATION OF FIBER MODEL FOR HIGH-STRENGTH SQUARE CONCRETE-FILLED STEEL TUBE BEAM-COLUMNS , 2005 .

[45]  Manuel L. Romero,et al.  A fast stress integration algorithm for reinforced concrete sections with axial loads and biaxial bending , 2004 .

[46]  Hiroyuki Nakahara,et al.  Behavior of centrally loaded concrete-filled steel-tube short columns , 2004 .

[47]  Theodore V. Galambos,et al.  Structural stability of steel , 2008 .

[48]  Kent Gylltoft,et al.  Structural behavior of slender circular steel-concrete composite columns under various means of load application , 2001 .

[49]  Jerome F. Hajjar,et al.  A Cyclic Nonlinear Model for Concrete-Filled Tubes. I: Formulation , 1997 .

[50]  Richard Sause,et al.  Experimental Behavior of High Strength Square Concrete-Filled Steel Tube Beam-Columns , 2002 .

[51]  J. G. Macgregor,et al.  Structural Design Considerations for High-Strength Concrete , 1993 .