1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers
暂无分享,去创建一个
Stephen J. Pearton | Akito Kuramata | Gwangseok Yang | Ji Hyun Kim | F. Ren | S. Pearton | Gwangseok Yang | A. Kuramata | Fan Ren | Jiancheng Yang | Jiancheng Yang | J. Kim
[1] Akito Kuramata,et al. Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .
[2] Philippe Godignon,et al. A Survey of Wide Bandgap Power Semiconductor Devices , 2014, IEEE Transactions on Power Electronics.
[3] B. J. Baliga,et al. Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.
[4] Stephen J. Pearton,et al. Review of radiation damage in GaN-based materials and devices , 2013 .
[5] Janghyuk Kim,et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors , 2016 .
[6] F. Ren,et al. Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β-Ga2O3 , 2017 .
[7] B. Pate,et al. Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process , 2016 .
[8] Akito Kuramata,et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .
[9] K. Hobart,et al. Editors' Choice Communication—A (001) β-Ga2O3 MOSFET with +2.9 V Threshold Voltage and HfO2 Gate Dielectric , 2016 .
[10] F. Ren,et al. Review—Ionizing Radiation Damage Effects on GaN Devices , 2016 .
[11] Akito Kuramata,et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .
[12] Akito Kuramata,et al. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V , 2016, IEEE Electron Device Letters.
[13] B. Pate,et al. Nanocrystalline Diamond Integration with III-Nitride HEMTs , 2017 .
[14] F. Ren,et al. Effect of 5 MeV proton irradiation damage on performance of β-Ga2O3 photodetectors , 2016 .
[15] Jaime A. Freitas,et al. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition , 2016 .
[16] Akito Kuramata,et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics , 2013 .
[17] Gwangseok Yang,et al. Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures , 2017 .
[18] Zbigniew Galazka,et al. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.
[19] Shizuo Fujita,et al. Wide-bandgap semiconductor materials: For their full bloom , 2014 .
[20] Akito Kuramata,et al. Development of gallium oxide power devices , 2014 .
[21] High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes , 2013, 1310.6824.
[22] Xutang Tao,et al. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics , 2017 .
[23] Jaime A. Freitas,et al. Structural, Optical, and Electrical Characterization of Monoclinic β-Ga2O3 Grown by MOVPE on Sapphire Substrates , 2016, Journal of Electronic Materials.
[24] Kevin D. Leedy,et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage , 2016 .
[25] R. Fornari,et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .
[26] Takeyasu Saito,et al. Leakage current analysis of diamond Schottky barrier diodes operated at high temperature , 2007 .
[27] C. Meliani,et al. Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking , 2012, IEEE Electron Device Letters.