APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT IN MULTIVARIATE ANALYSIS.

The greatest root distribution occurs everywhere in classical multivariate analysis, but even under the null hypothesis the exact distribution has required extensive tables or special purpose software. We describe a simple approximation, based on the Tracy-Widom distribution, that in many cases can be used instead of tables or software, at least for initial screening. The quality of approximation is studied, and its use illustrated in a variety of setttings.

[1]  Concise Tables for Statisticians. , 1959 .

[2]  K. Pillai,et al.  Percentage points of the largest characteristic root of the multivariate beta matrix , 1984 .

[3]  Alan Edelman,et al.  The efficient evaluation of the hypergeometric function of a matrix argument , 2006, Math. Comput..

[4]  K. Pillai,et al.  ON THE DISTRIBUTION OF THE LARGEST OR THE SMALLEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS , 1956 .

[5]  F. G. Foster,et al.  Upper Percentage Points of the Generalized Beta Distribution. III , 1957 .

[6]  A Turbo Pascal Unit for Approximating the Cumulative Distribution Function of Roy'S Largest Root Criterion , 1992 .

[7]  K. Pillai,et al.  On the distribution of the largest characteristic root of a matrix in multivariate analysis , 1965 .

[8]  William W. S. Chen Some New Tables for Upper Probability Points of the Largest Root of a Determinantal Equation with Seven and Eight Roots , 2002 .

[9]  D. N. Nanda Distribution of a Root of a Determinantal Equation , 1948 .

[10]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[11]  J. Lutz Roy Table: A Program for Generating Tables of Critical Values for Roy’s Largest Root Criterion , 2000 .

[12]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[13]  I. Johnstone MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.

[14]  A. Constantine Some Non-Central Distribution Problems in Multivariate Analysis , 1963 .

[15]  P. Krishnaiah,et al.  24 Computations of some multivariate distributions , 1980 .

[16]  C. Anderson‐Cook,et al.  An Introduction to Multivariate Statistical Analysis (3rd ed.) (Book) , 2004 .

[17]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[18]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[19]  K. Pillai,et al.  On the distribution of the largest of six roots of a matrix in multivariate analysis , 1959 .

[20]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[21]  D. L. Heck,et al.  Charts of Some Upper Percentage Points of the Distribution of the Largest Characteristic Root , 1960 .

[22]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[23]  F. G. Foster,et al.  Upper Percentage Points of the Generalized Beta Distribution. III , 1960 .

[24]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[25]  A. C. Rencher Methods of multivariate analysis , 1995 .

[26]  A. W. Davis On the Marginal Distributions of the Latent Roots of the Multivariate Beta Matrix , 1972 .

[27]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[28]  K. Pillai,et al.  Upper percentage points of the largest root of a matrix in multivariate analysis. , 1967, Biometrika.

[29]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[30]  Joint Statistical Meetings- Statistical Computing Section SOME NEW TABLES OF THE LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS: A , 2022 .

[31]  Frederick V. Waugh,et al.  Regressions between Sets of Variables , 1942 .

[32]  K. Pillai Some New Test Criteria in Multivariate Analysis , 1955 .

[33]  K. Pillai Some Results Useful in Multivariate Analysis , 1956 .

[34]  Connie M. Borror,et al.  Methods of Multivariate Analysis, 2nd Ed. , 2004 .

[35]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[36]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.