Deceptively cold dust in the massive starburst galaxy GN20 at z ∼ 4

We present new observations, carried out with IRAM NOEMA, of the atomic neutral carbon transitions [C I](3P1–3P0) at 492 GHz and [C I](3P2–3P1) at 809 GHz of GN20, a well-studied star-bursting galaxy at z = 4.05. The high luminosity line ratio [C I](3P2–3P1) /[C I](3P1–3P0) implies an excitation temperature of 48+14−9 K, which is significantly higher than the apparent dust temperature of Td = 33 ± 2 K (β = 1.9) derived under the common assumption of an optically thin far-infrared dust emission, but fully consistent with Td = 52 ± 5 K of a general opacity model where the optical depth (τ) reaches unity at a wavelength of λ0 = 170 ± 23 μm. Moreover, the general opacity solution returns a factor of ∼2× lower dust mass and, hence, a lower molecular gas mass for a fixed gas-to-dust ratio, than with the optically thin dust model. The derived properties of GN20 thus provide an appealing solution to the puzzling discovery of starbursts appearing colder than main-sequence galaxies above z >  2.5, in addition to a lower dust-to-stellar mass ratio that approaches the physical value predicted for starburst galaxies.

[1]  D. Narayanan,et al.  The Properties of the Interstellar Medium of Galaxies across Time as Traced by the Neutral Atomic Carbon [C i] , 2020, The Astrophysical Journal.

[2]  B. Groves,et al.  Automated Mining of the ALMA Archive in the COSMOS Field (A3COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6 , 2019, The Astrophysical Journal.

[3]  N. Lu,et al.  Erratum: “Resolved Neutral Carbon Emission in Nearby Galaxies: [C i] Lines as Total Molecular Gas Tracers” (2019, ApJ, 880, 133) , 2019, The Astrophysical Journal.

[4]  N. Lu,et al.  Resolved Neutral Carbon Emission in Nearby Galaxies: [C i] Lines as Total Molecular Gas Tracers , 2019, The Astrophysical Journal.

[5]  E. Schinnerer,et al.  Discovery of Four Apparently Cold Dusty Galaxies at z = 3.62–5.85 in the COSMOS Field: Direct Evidence of Cosmic Microwave Background Impact on High-redshift Galaxy Observables , 2019, The Astrophysical Journal.

[6]  A. Omont,et al.  Planck’s Dusty GEMS , 2018, Astronomy & Astrophysics.

[7]  M. Dickinson,et al.  A Survey of Atomic Carbon [C i] in High-redshift Main-sequence Galaxies , 2018, The Astrophysical Journal.

[8]  D. Elbaz,et al.  Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ≤ z ≤ 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  D. Elbaz,et al.  Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 , 2017, 1710.10276.

[10]  D. Elbaz,et al.  Dust and Gas in Star Forming Galaxies at z~3 - Extending Galaxy Uniformity to 11.5 Billion Years , 2017, 1705.06296.

[11]  E. Dishoeck,et al.  Cosmic-ray Induced Destruction of CO in Star-forming Galaxies , 2017, 1703.08598.

[12]  O. Ilbert,et al.  Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift , 2017, 1702.04729.

[13]  J. Vieira,et al.  ALMA observations of atomic carbon in z ∼ 4 dusty star-forming galaxies , 2016, 1612.04380.

[14]  C. Conselice,et al.  The SCUBA-2 Cosmology Legacy Survey: Multi-wavelength Properties of ALMA-identified Submillimeter Galaxies in UKIDSS UDS , 2016, 1611.03084.

[15]  C. C. Chen,et al.  KILOPARSEC-SCALE DUST DISKS IN HIGH-REDSHIFT LUMINOUS SUBMILLIMETER GALAXIES , 2016, The Astrophysical Journal.

[16]  B. Robertson,et al.  ALMA Resolves the Nuclear Disks of Arp 220 , 2016, 1605.09381.

[17]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[18]  R. Genzel,et al.  Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA , 2015, 1511.05147.

[19]  S. Veilleux,et al.  The far-infrared emitting region in local galaxies and QSOs: Size and scaling relations , 2015, 1511.02075.

[20]  F. P. Israel,et al.  Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies , 2015, 1504.08005.

[21]  J. Hodge,et al.  THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20 , 2014, 1412.2132.

[22]  D. Elbaz,et al.  CO excitation of normal star forming galaxies out to $z=1.5$ as regulated by the properties of their interstellar medium , 2014, 1409.8158.

[23]  F. Bertoldi,et al.  Evolution of the dust emission of massive galaxies up to z=4 and constraints on their dominant mode of star formation , 2014, 1409.5796.

[24]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[25]  David Elbaz,et al.  Dust and gas in luminous proto-cluster galaxies at z=4.05: the case for different cosmic dust evolution in normal and starburst galaxies , 2014, 1403.7992.

[26]  Paul C. Clark,et al.  Modelling [C I] emission from turbulent molecular clouds , 2014, 1403.3530.

[27]  D. Riechers,et al.  HerMES: SPECTRAL ENERGY DISTRIBUTIONS OF SUBMILLIMETER GALAXIES AT z > 4 , 2014, 1401.6079.

[28]  D. Narayanan,et al.  A theory for the excitation of CO in star-forming galaxies , 2014, 1401.2998.

[29]  A. Weiss,et al.  Using [C I] to probe the interstellar medium in z ˜ 2.5 sub-millimeter galaxies , 2013, 1307.6593.

[30]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[31]  D. Elbaz,et al.  REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE , 2013, 1303.4392.

[32]  B. Groves,et al.  ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS , 2013, The Astrophysical Journal.

[33]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[34]  F. Walter,et al.  EVIDENCE FOR A CLUMPY, ROTATING GAS DISK IN A SUBMILLIMETER GALAXY AT z = 4 , 2012, 1209.2418.

[35]  D. Elbaz,et al.  THE MOLECULAR GAS CONTENT OF z = 3 LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT z > 2 , 2012, 1209.1484.

[36]  Oxford,et al.  Predictions for the CO emission of galaxies from a coupled simulation of galaxy formation and photon dominated regions , 2012, 1204.0795.

[37]  P. D. Werf,et al.  The molecular gas in Luminous Infrared Galaxies I: CO lines, extreme physical conditions, and their drivers , 2011, 1109.4176.

[38]  D. Elbaz,et al.  GOODS-HERSCHEL: GAS-TO-DUST MASS RATIOS AND CO-TO-H2 CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH-z , 2011, 1109.1140.

[39]  D. Elbaz,et al.  GOODS-Herschel: a population of 24 μm dropout sources at z < 2 , 2011, 1108.0838.

[40]  D. H. Hughes,et al.  GAS AND DUST IN A SUBMILLIMETER GALAXY AT z = 4.24 FROM THE HERSCHEL ATLAS , 2011, 1107.2924.

[41]  F. Walter,et al.  EXPANDED VERY LARGE ARRAY OBSERVATIONS OF A PROTO-CLUSTER OF MOLECULAR GAS-RICH GALAXIES AT z = 4.05 , 2011, 1105.2451.

[42]  S. Djorgovski,et al.  DISCOVERY OF A MULTIPLY LENSED SUBMILLIMETER GALAXY IN EARLY HerMES HERSCHEL/SPIRE DATA , 2011, 1104.4113.

[43]  F. Walter,et al.  A SURVEY OF ATOMIC CARBON AT HIGH REDSHIFT , 2011, 1101.4027.

[44]  R. Davé,et al.  IMAGING THE MOLECULAR GAS IN A SUBMILLIMETER GALAXY AT z = 4.05: COLD MODE ACCRETION OR A MAJOR MERGER? , 2010, 1002.3838.

[45]  P. P. van der Werf,et al.  CO J = 6–5 IN Arp 220: STRONG EFFECTS OF DUST ON HIGH-J CO LINES , 2010, 1001.3653.

[46]  G. Magdis,et al.  On the stellar masses of IRAC detected Lyman Break Galaxies at z∼ 3 , 2009, 0909.3950.

[47]  F. Bertoldi,et al.  A search for neutral carbon towards two z= 4.05 submillimetre galaxies, GN 20 and GN 20.2 , 2009, 0908.3675.

[48]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[49]  M. Halpern,et al.  An AzTEC 1.1 mm Survey of the GOODS-N Field – I. Maps, Catalogue and Source Statistics , 2008, 0806.3791.

[50]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[51]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[52]  Caltech,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[53]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[54]  Caltech,et al.  The Hubble Deep Field-North SCUBA Super-map - IV. Characterizing submillimetre galaxies using deep Spitzer imaging , 2006, astro-ph/0605573.

[55]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[56]  W. Thi,et al.  C i lines as tracers of molecular gas, and their prospects at high redshifts , 2004 .

[57]  Papadopoulos P. Padeli,et al.  The CI lines as tracers of molecular gas, and their prospects at high redshifts , 2004, astro-ph/0403092.

[58]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[59]  C. Kramer,et al.  A multiwavelength study of the S 106 region II. Characteristics of the photon dominated region , 2003 .

[60]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[61]  S. Chapman,et al.  Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts , 2002, astro-ph/0209450.

[62]  G. Winnewisser,et al.  Atomic Carbon in M82: Physical Conditions Derived from Simultaneous Observations of the [C I] Fine-Structure Submillimeter-Wave Transitions , 1996, astro-ph/9612112.

[63]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[64]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .