CHAPTER 14 – Terpenoid Metabolism by Pseudomonas

[1]  P. Trudgill,et al.  Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453 , 1986, Journal of bacteriology.

[2]  Renganathan,et al.  Biodegradation of acetates of geraniol, nerol and citronellol by P. incognita: Isolation and identification of metabolites , 1983 .

[3]  P. A. Vandenbergh,et al.  Plasmid Involvement in Acyclic Isoprenoid Metabolism by Pseudomonas putida , 1983, Applied and environmental microbiology.

[4]  P. Trudgill,et al.  Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida , 1983, Journal of bacteriology.

[5]  V. Renganathan,et al.  Linalyl Acetate Is Metabolized by Pseudomonas incognita with the Acetoxy Group Intact , 1983, Applied and environmental microbiology.

[6]  H. Nishimura,et al.  Eucalyptus as Biomass. Novel Compounds from Microbial Conversion of 1, 8-Cineole , 1982 .

[7]  P. Trudgill,et al.  Metabolism of cyclohexaneacetic acid and cyclohexanebutyric acid by Arthrobacter sp. strain CA1 , 1982, Journal of bacteriology.

[8]  C. Walsh,et al.  Mechanistic studies on cyclohexanone oxygenase. , 1982, Biochemistry.

[9]  B. Shastry,et al.  The primary structure of the monoxygenase cytochrome P450CAM. , 1982, Biochemical and biophysical research communications.

[10]  R. Fall,et al.  Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis , 1979, Applied and environmental microbiology.

[11]  I. M. Shaw,et al.  Products of 1,8-Cineole Oxidation by a Pseudomonad , 1979 .

[12]  S. Dagley,et al.  Catabolism of L-tyrosine in Trichosporon cutaneum , 1979, Journal of bacteriology.

[13]  Bhat Sg,et al.  Microbiological transformations of terpenes: Part XXV--enzymes involved in the degradation of linalool in the Pseudomonas incognita, Linalool strain. , 1978 .

[14]  D. Watt,et al.  Biodegradation of acyclic isoprenoids by Pseudomonas species , 1978, Journal of bacteriology.

[15]  E. Blakley The microbial degradation of cyclohexanecarboxylic acid by a beta-oxidation pathway with simultaneous induction to the utilization of benzoate. , 1978, Canadian journal of microbiology.

[16]  P. Trudgill,et al.  Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1 , 1978, Journal of bacteriology.

[17]  P. Bhattacharyya,et al.  Microbiological transformations of terpenes: Part XXIV--Pathways of degradation of linalool, geraniol, nerol & limonene by Pseudomonas incognita (linalool strain). , 1977, Indian journal of biochemistry & biophysics.

[18]  D. Kelly,et al.  alpha-Pinene metabolism by Pseudomonas putida. , 1977, The Biochemical journal.

[19]  P. Bhattacharyya,et al.  Microbiological transformations of terpenes: Part XXIII--Fermentation of geraniol, nerol & limonene by a soil pseudomonad, pseudomonas incognita (linalool strain). , 1977, Indian journal of biochemistry & biophysics.

[20]  H. Sakai,et al.  Microbial oxidation of p-menthane. II. Isolation of a few metabolites from p-menthane and conditions for cis-p-menthan-1-ol production by Pseudomonas mendocina-SF. , 1977 .

[21]  R. J. Watkinson,et al.  Microbial Metabolism of Alicyclic Hydrocarbons: Isolation and Properties of a Cyclohexane-degrading Bacterium , 1977 .

[22]  D. W. Ribbons,et al.  p-cymene pathway in Pseudomonas putida: initial reactions , 1977, Journal of bacteriology.

[23]  P. Trudgill,et al.  The metabolism of trans-cyclohexan-1,2-diol by an Acinetobacter species. , 1977, European journal of biochemistry.

[24]  C. S. Vaidyanathan,et al.  Metabolism of monoterpene alcohol, linalool, by a soil pseudomonad. , 1977, Canadian journal of microbiology.

[25]  D. W. Ribbons,et al.  p-Cymene pathway in Pseudomonas putida: ring cleavage of 2,3-dihydroxy-p-cumate and subsequent reactions , 1977, Journal of bacteriology.

[26]  R. Croteau,et al.  Biosynthesis of monoterpenes: partial purification and characterization of 1,8-cineole synthetase from Salvia officinalis. , 1977, Archives of biochemistry and biophysics.

[27]  D. W. Ribbons,et al.  The p-cymene pathway in Pseudomonas putida PL: isolation of a dihydrodiol accumulated by a mutant. , 1976, Biochemical and biophysical research communications.

[28]  A. Chakrabarty,et al.  Isolation of plasmid deoxyribonucleic acid from Pseudomonas putida , 1976, Journal of bacteriology.

[29]  P. Trudgill,et al.  The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. , 1976, European journal of biochemistry.

[30]  P. Trudgill,et al.  Purification and properties of cyclopentanone oxygenase of Pseudomonas NCIB 9872. , 1976, European journal of biochemistry.

[31]  M. Kunimatsu,et al.  Microbiological Conversion of α-Terpineol (2) , 1976 .

[32]  P. Trudgill,et al.  The metabolism of cyclohexanol by Acinetobacter NCIB 9871. , 1975, European journal of biochemistry.

[33]  D. Jerina,et al.  Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. , 1975, Science.

[34]  W. Evans,et al.  The aerobic metabolism of cyclohexanecarboxylic acid by Acinetobacter anitratum. , 1975, The Biochemical journal.

[35]  D. Jerina,et al.  Initial reactions in the oxidation of naphthalene by Pseudomonas putida. , 1975, Biochemistry.

[36]  J. Brand,et al.  Source of oxygen in the conversion of 2-tridecanone to undecyl acetate by Pseudomonas cepacia and Nocardia sp. , 1974, Biochimica et biophysica acta.

[37]  E. Blakley The microbial degradation of cyclohexanecarboxylic acid: a pathway involving aromatization to form p-hydroxybenzoic acid , 1974 .

[38]  Bhattacharyya Pk,et al.  Microbiological transformations of terpenes: Part XXII--Enzymes involved in the degradation of camphene in the Pseudomonas camphene strain. , 1974 .

[39]  Bhattacharyya Pk,et al.  Microbiological transformations of terpenes: Part XXI-growth & adaptation studies on the degradation of camphene by the Pseudomonas camphene strain. , 1974 .

[40]  T. Kaneda Enzymatic aromatization of 4-ketocyclohexanecarboxylic acid to p-hydroxybenzoic acid. , 1974, Biochemical and biophysical research communications.

[41]  Y. Noma,et al.  Conversion of ( + )-Carvone by Pseudomonas ovalis, Strain 6-1 (1) , 1974 .

[42]  J. Lipscomb,et al.  14 – BACTERIAL MONOXYGENASES—THE P450 CYTOCHROME SYSTEM* , 1974 .

[43]  Bhattacharyya Pk,et al.  Microbiological transformations of terpenes. XX. Fermentation of camphene by a soil pseudomonad (Camphene strain). , 1973 .

[44]  L. Hersh Malate adenosine triphosphate lyase. Separation of the reaction into a malate thiokinase and malyl coenzyme A lyase. , 1973, The Journal of biological chemistry.

[45]  A. Chakrabarty,et al.  Camphor Plasmid-Mediated Chromosomal Transfer in Pseudomonas putida , 1973, Journal of bacteriology.

[46]  A. Hacking,et al.  Cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylate by Pseudomonas AM1 and other C1-unit-utilizing bacteria. , 1973, The Biochemical journal.

[47]  G. S. Wilson,et al.  Electrochemical studies of putidaredoxin and its selenium analog. , 1973, The Journal of biological chemistry.

[48]  D. Jerina,et al.  Absolute stereochemistry of the (+)-cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene produced from toluene by Pseudomonas putida. , 1973, Journal of the American Chemical Society.

[49]  A. Chakrabarty,et al.  A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Gibson,et al.  Oxidation of biphenyl by a Beijerinckia species. , 1973, Biochemical and biophysical research communications.

[51]  J. Lipscomb,et al.  CHAPTER 6 – Structure and Reactions of a Microbial Monoxygenase: The Role of Putidaredoxin , 1973 .

[52]  E. Bellion,et al.  Methylamine metabolism in a pseudomonas species. , 1972, Archives of biochemistry and biophysics.

[53]  L. Jaenicke,et al.  Benzene metabolism of Moraxella species. , 1972, European journal of biochemistry.

[54]  J. Lipscomb,et al.  The role of putidaredoxin and P450 cam in methylene hydroxylation. , 1972, The Journal of biological chemistry.

[55]  P. Trudgill,et al.  The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872. , 1972, The Biochemical journal.

[56]  T. Hayashi,et al.  Conversion of α-Terpineol to 8,9-Epoxy-p-menthan-1-ol , 1972 .

[57]  I. C. Gunsalus,et al.  Mössbauer parameters of putidaredoxin and its selenium analog. , 1972, Biochemistry.

[58]  I. C. Gunsalus,et al.  Composition and structure of camphor hydroxylase components and homology between putidaredoxin and adrenodoxin. , 1971, Biochemical and biophysical research communications.

[59]  H. Beinert,et al.  The iron electron-nuclear double resonance (ENDOR) of two-iron ferredoxins from spinach, parsley, pig adrenal cortex and Pseudomonas putida. , 1971, Biochimica et biophysica acta.

[60]  S. Pirt,et al.  The degradation of α‐pinene by Pseudomonas PX1 , 1971 .

[61]  P. Williams,et al.  The configuration of the 1,2-dihydroxy-1,2-dihydronaphthalene formed in the bacterial metabolism of naphthalene. , 1971, Biochimica et biophysica acta.

[62]  P. Chapman,et al.  The enzymic degradation of alkyl-substituted gentisates, maleates and malates. , 1971, The Biochemical journal.

[63]  P. Trudgill,et al.  The metabolism of cyclohexanol by Nocardia globerula CL1. , 1971, The Biochemical journal.

[64]  P. Chapman,et al.  The Microbial Oxidation of Aromatic Hydrocarbons , 1971 .

[65]  D. W. Ribbons,et al.  Monoterpene Dissimilation: Chemical and Genetic Models , 1971 .

[66]  D. Jerina,et al.  Cis-1,2-dihydroxy-1,2-dihydronaphthalene: a bacterial metabolite from naphthalene. , 1971, Archives of biochemistry and biophysics.

[67]  I. C. Gunsalus,et al.  Chemical characterization of cytochrome P-450cam. , 1970, Biochemical and biophysical research communications.

[68]  I. C. Gunsalus,et al.  Crystalline cytochrome P-450cam. , 1970, Biochemical and biophysical research communications.

[69]  W. Orme-Johnson,et al.  The magnetic susceptibility of the oxidized and reduced iron-sulfur proteins adrenodoxin and putidaredoxin. , 1970, Biochimica et biophysica acta.

[70]  D. Gibson,et al.  Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. , 1970, Biochemistry.

[71]  I. C. Gunsalus,et al.  Monoxygenases. VII. Camphor ketolactonase I and the role of three protein components. , 1969, The Journal of biological chemistry.

[72]  S. Dagley,et al.  Oxoenoic acids as metabolites in the bacterial degradation of catechols. , 1969, The Biochemical journal.

[73]  Madhyastha Km,et al.  Microbiological transformations of terpenes. XV. Enzyme systems in the catabolism of p-cymene in PL-strain. , 1968 .

[74]  Madhyastha Km,et al.  Microbiological transformations of terpenes. 13. Pathways for degradation of p-cymene in a soil pseudomonad (PL-strain). , 1968 .

[75]  Gunsalus Ic A soluble methylene hydroxylase system: structure and role of cytochrome P-450 and iron-sulfur protein components. , 1968 .

[76]  D T Gibson,et al.  Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. , 1968, Biochemistry.

[77]  I. C. Gunsalus,et al.  A soluble cytochrome P-450 functional in methylene hydroxylation. , 1968, The Journal of biological chemistry.

[78]  H. Frauenfelder,et al.  Mössbauer studies on putidaredoxin. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[79]  P. Bhattacharyya,et al.  Microbiological transformations of terpenes. XIV. Purification & properties of perillyl alcohol dehydrogenase. , 1968, Indian journal of biochemistry.

[80]  H. Beinert,et al.  The number of iron atoms in the paramagnetic center (G =1.94) of reduced putidaredoxin, a nonheme iron protein. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[81]  I. C. Gunsalus,et al.  Selenium as an acid labile sulfur replacement in putidaredoxin. , 1968, Biochemical and Biophysical Research Communications - BBRC.

[82]  R. I. Leavitt Microbial Oxidation of Hydrocarbons. Oxidation of p-Isopropyltoluene by a Pseudomonas sp. , 1967 .

[83]  D. W. Cushman,et al.  The ferroprotein component of a methylene hydroxylase. , 1967, Biochemical and biophysical research communications.

[84]  L. A. Jacobson Enzyme Induction and Repression in the Catabolism of (positive)-Camphor by Pseudomonas Putida , 1967 .

[85]  P. Trudgill,et al.  Mixed function oxidation. VI. Purification of a tightly coupled electron transport complex in camphor lactonization. , 1966, The Journal of biological chemistry.

[86]  Rangachari Pn,et al.  Microbiological transformations of terpenes. IX. Pathways of degradation of limonene in a soil pseudomonad. , 1966 .

[87]  Bhattacharyya Pk,et al.  Microbiological transformations of terpenes. 8. Fermentation of limonene by a soil pseudomonad. , 1966 .

[88]  D. Hall,et al.  The iron complex in spinach ferredoxin. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[90]  P. Trudgill,et al.  Mixed function oxidation. V. Flavin interaction with a reduced diphosphopyridine nucleotide dehydrogenase, one of the enzymes participating in camphor lactonization. , 1966, The Journal of biological chemistry.

[91]  K. Rinehart,et al.  A New Acyclic Acid Metabolite in Camphor Oxidation , 1966 .

[92]  Koichi Yamada,et al.  Studies on the Utilization of Hydrocarbons by Microorganisms:Part X. Screening of Aromatic Hydrocarbon-Assimilating Microorganisms and p -Toluic Acid Formation from p -Xylene , 1965 .

[93]  K. Lieb,et al.  Mixed function oxidation. 3. An electron transport complex in camphor ketolactonization. , 1965, The Journal of biological chemistry.

[94]  I. C. Gunsalus,et al.  Mixed function oxidation. IV. An induced methylene hydroxylase in camphor oxidation. , 1965, The Journal of biological chemistry.

[95]  D. Gibson,et al.  THE BACTERIAL DEGRADATION OF CATECHOL. , 1965, The Biochemical journal.

[96]  Tokuji Kimura,et al.  An iron protein as a component of steroid 11β-hydroxylase complex , 1965 .

[97]  I. C. Gunsalus,et al.  MIXED FUNCTION OXIDATION. II. SEPARATION AND PROPERTIES OF THE ENZYMES CATALYZING CAMPHOR LACTONIZATION. , 1965, The Journal of biological chemistry.

[98]  H. Kornberg,et al.  The utilization of itaconate by Pseudomonas sp. , 1964, The Biochemical journal.

[99]  P. Bhattacharyya,et al.  Microbiological Transformation of Terpenes , 1962 .

[100]  P. Bhattachryya,et al.  Microbiological transformations of terpenes. III. Transformations of some mono- and sesqui-terpenes. , 1962, Applied microbiology.

[101]  I. C. Gunsalus,et al.  An enzyme system for cyclic ketone lactonization. , 1961, Biochemical and biophysical research communications.

[102]  R. L. Raymond,et al.  Oxidation of alkyl-substituted cyclic hydrocarbons by a Nocardia during growth on n-alkanes. , 1961, Applied microbiology.

[103]  S. Willimott,et al.  C Horizon of the Soil Profile , 1960, Nature.

[104]  B. D. Kulkarni,et al.  Microbiological Transformation of Terpenes: Hydroxylation of α-Pinene , 1960, Nature.

[105]  W. Seubert Degradation of isoprenoid compounds by micro-organisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. , 1960, Journal of bacteriology.

[106]  E. Corey,et al.  MICROBIOLOGICAL DEGRADATION OF (+)-CAMPHOR , 1959 .