THE RELATIONSHIP BETWEEN STELLAR MASS, GAS METALLICITY, AND STAR FORMATION RATE FOR Hα-SELECTED GALAXIES AT z ≈ 0.8 FROM THE NewHα SURVEY

Using a sample of 299 Hα-selected galaxies at z ≈ 0.8 ?> , we study the relationship between galaxy stellar mass, gas-phase metallicity, and star formation rate (SFR), and compare to previous results. We use deep optical spectra obtained with the IMACS spectrograph at the Magellan telescope to measure strong oxygen lines. We combine these spectra and metallicities with (1) rest-frame UV-to-optical imaging, which allows us to determine stellar masses and dust attenuation corrections, and (2) Hα narrowband imaging, which provides a robust measurement of the instantaneous SFR. Our sample spans stellar masses of ∼109–6 × 1011 M ⊙ ?> , SFRs of 0.4–270 M ⊙ ?> yr−1, and metal abundances of 12 + log ( O / H ) ≈ 8.3 ?> –9.1 ( ≈ 0.4 ?> –2.6 Z ⊙ ?> ). The correlations that we find between the Hα-based SFR and stellar mass (i.e., the star-forming “main sequence”) and between the stellar mass and metallicity are both consistent with previous z ∼ 1 ?> studies of star-forming galaxies. We then study the relationship between the three properties using various plane-fitting techniques and a curve-fitting projection. In all cases, we exclude strong dependence of the M ⋆ ?> –Z relation on SFR, but are unable to distinguish between moderate and no dependence. Our results are consistent with previous mass–metallicity–SFR studies. We check whether data set limitations may obscure a strong dependence on the SFR by using mock samples drawn from the Sloan Digital Sky Survey. These experiments reveal that the adopted signal-to-noise ratio cuts may have a significant effect on the measured dependence. Further work is needed to investigate these results, and to test whether a “fundamental metallicity relation” or a “fundamental plane” describes star-forming galaxies across cosmic time.

[1]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[2]  P. McCarthy,et al.  PHYSICAL PROPERTIES OF EMISSION-LINE GALAXIES AT z ∼ 2 FROM NEAR-INFRARED SPECTROSCOPY WITH MAGELLAN FIRE , 2014, 1402.0510.

[3]  Naoyuki Tamura,et al.  The mass-metallicity relation at z ∼ 1.4 revealed with Subaru/FMOS ⋆ , 2013, 1311.2624.

[4]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. II. THE MASS–METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION , 2013, 1310.4950.

[5]  A. Dekel,et al.  Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies , 2013, 1305.2925.

[6]  D. Weinberg,et al.  A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.

[7]  P. McCarthy,et al.  LOW MASSES AND HIGH REDSHIFTS: THE EVOLUTION OF THE MASS–METALLICITY RELATION , 2013, 1309.4458.

[8]  I. Smail,et al.  A fundamental metallicity relation for galaxies at z = 0.84–1.47 from HiZELS , 2013, 1309.0506.

[9]  T. Nagao,et al.  “DIRECT” GAS-PHASE METALLICITIES, STELLAR PROPERTIES, AND LOCAL ENVIRONMENTS OF EMISSION-LINE GALAXIES AT REDSHIFTS BELOW 0.90 , 2013, 1307.7712.

[10]  L. Kewley,et al.  NEW STRONG-LINE ABUNDANCE DIAGNOSTICS FOR H ii REGIONS: EFFECTS OF κ-DISTRIBUTED ELECTRON ENERGIES AND NEW ATOMIC DATA , 2013, 1307.5950.

[11]  L. Kewley,et al.  MEASURING NEBULAR TEMPERATURES: THE EFFECT OF NEW COLLISION STRENGTHS WITH EQUILIBRIUM AND κ-DISTRIBUTED ELECTRON ENERGIES , 2013, 1306.2023.

[12]  K. Finlator,et al.  THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT INTERMEDIATE REDSHIFT , 2013, 1304.4239.

[13]  K. Jahnke,et al.  Mass-metallicity relation explored with CALIFA I. Is there a dependence on the star-formation rate? , 2013, 1304.2158.

[14]  Michael J. Kurtz,et al.  THE CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES OVER THE LAST 11 BILLION YEARS , 2013, 1303.5987.

[15]  C. Carollo,et al.  GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.

[16]  J. Richard,et al.  TESTING THE UNIVERSALITY OF THE FUNDAMENTAL METALLICITY RELATION AT HIGH REDSHIFT USING LOW-MASS GRAVITATIONALLY LENSED GALAXIES , 2013, 1302.3614.

[17]  B. Andrews,et al.  THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.

[18]  B. Garilli,et al.  The cosmic evolution of oxygen and nitrogen abundances in star-forming galaxies over the past 10 Gyr , 2012, 1210.0334.

[19]  G. Gavazzi,et al.  The role of cold gas and environment on the stellar mass-metallicity relation of nearby galaxies , 2012, 1207.4191.

[20]  R. Maiolino,et al.  Scaling relations of metallicity, stellar mass and star formation rate in metal‐poor starbursts – I. A Fundamental Plane , 2012, 1209.1100.

[21]  S. Salim,et al.  STAR FORMATION RATE DISTRIBUTIONS: INADEQUACY OF THE SCHECHTER FUNCTION , 2012, 1209.0778.

[22]  D. Dale,et al.  NEBULAR ATTENUATION IN Hα-SELECTED STAR-FORMING GALAXIES AT z = 0.8 FROM THE NewHα SURVEY , 2012, 1207.5479.

[23]  A. Hopkins,et al.  On the 3D structure of the mass, metallicity, and SFR space for SF galaxies , 2012, 1207.0950.

[24]  Benjamin D. Johnson,et al.  DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES , 2012, 1205.6782.

[25]  J. Walsh,et al.  METALLICITIES OF EMISSION-LINE GALAXIES FROM HST ACS PEARS AND HST WFC3 ERS GRISM SPECTROSCOPY AT 0.6 < z < 2.4 , 2012, 1205.3172.

[26]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[27]  M. Dopita,et al.  RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H ii REGIONS AND PLANETARY NEBULAE: κ-DISTRIBUTED ELECTRONS , 2012, 1204.3880.

[28]  Naoyuki Tamura,et al.  NIR Spectroscopy of Star-Forming Galaxies at z 1.4 with Subaru/FMOS: The Mass-Metallicity Relation , 2011, 1112.3704.

[29]  L. Kewley,et al.  THE METALLICITY EVOLUTION OF INTERACTING GALAXIES , 2011, 1107.0001.

[30]  V. Wild,et al.  Evolution of the Stellar Mass-Metallicity Relation Since z=0.75 , 2011, 1112.3300.

[31]  F. Mannucci,et al.  The metallicity properties of zCOSMOS galaxies at 0.2 < z < 0.8 , 2011, 1110.4408.

[32]  S. Bamford,et al.  Galaxy And Mass Assembly: Stellar Mass Estimates , 2011, 1108.0635.

[33]  D. Koo,et al.  STAR FORMATION RATES AND STELLAR MASSES OF Hα SELECTED STAR-FORMING GALAXIES AT z = 0.84: A QUANTIFICATION OF THE DOWNSIZING , 2011, 1107.4371.

[34]  G. Kauffmann,et al.  The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.

[35]  M. Dickinson,et al.  A NEW DIAGNOSTIC OF ACTIVE GALACTIC NUCLEI: REVEALING HIGHLY ABSORBED SYSTEMS AT REDSHIFT >0.3 , 2011, 1105.3194.

[36]  Davis,et al.  A CENSUS OF STAR-FORMING GALAXIES AT z = 1–3 IN THE SUBARU DEEP FIELD , 2011, 1104.5019.

[37]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[38]  Benjamin D. Johnson,et al.  A GALEX ULTRAVIOLET IMAGING SURVEY OF GALAXIES IN THE LOCAL VOLUME , 2010, 1009.4705.

[39]  L. Kewley,et al.  THE MASS–METALLICITY AND LUMINOSITY–METALLICITY RELATIONS FROM DEEP2 AT z ∼ 0.8 , 2010, 1006.4877.

[40]  M. Swinbank,et al.  The emission line properties of gravitationally lensed 1.5 < z < 5 galaxies , 2010, 1011.6413.

[41]  F. Mannucci,et al.  The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.

[42]  U. Wyoming,et al.  THE Hα LUMINOSITY FUNCTION AND STAR FORMATION RATE VOLUME DENSITY AT z = 0.8 FROM THE NEWFIRM Hα SURVEY , 2010, 1011.2759.

[43]  M. Peeples,et al.  Constraints on star formation driven galaxy winds from the mass–metallicity relation at z= 0 , 2010, 1007.3743.

[44]  M. S'anchez-Portal,et al.  A fundamental plane for field star-forming galaxies , 2010, 1005.0509.

[45]  J. V'ilchez,et al.  ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE “GREEN PEA” GALAXIES , 2010, 1004.4910.

[46]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[47]  A. Dekel,et al.  On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.

[48]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[49]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[50]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[51]  T. Treu,et al.  LYMAN BREAK GALAXIES AT z ≈ 1.8–2.8: GALEX/NUV IMAGING OF THE SUBARU DEEP FIELD , 2009, 0902.4712.

[52]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[53]  B. Milliard,et al.  Photometry in UV astronomical images of extended sources in crowded field using deblended images in optical visible bands as Bayesian priors , 2009, Electronic Imaging.

[54]  L. Cowie,et al.  DEEP SPECTROSCOPY OF ULTRA-STRONG EMISSION-LINE GALAXIES , 2009, 0902.0336.

[55]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[56]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[57]  J. Brinchmann,et al.  Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey - I. The evolution of the mass-metallicity relation up to z ~ 0.9 , 2008, 0811.2053.

[58]  Heidelberg,et al.  IMAGES IV* : strong evolution of the oxygen abundance in gaseous phases of intermediate mass galaxies from z ∼ 0.8 , 2008, 0810.0272.

[59]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[60]  Ronald G. Probst,et al.  First light with NEWFIRM , 2008, Astronomical Telescopes + Instrumentation.

[61]  L. Cowie,et al.  Accepted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj AN INTEGRATED PICTURE OF STAR FORMATION, METALLICITY EVOLUTION, AND GALACTIC STELLAR MASS ASSEMBLY 1 , 2022 .

[62]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[63]  K. Stanek,et al.  Outliers from the Mass-Metallicity Relation. I. A Sample of Metal-Rich Dwarf Galaxies from SDSS , 2008, 0804.2671.

[64]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[65]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.

[66]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[67]  Robert Barkhouser,et al.  The FourStar infrared camera , 2007, Astronomical Telescopes + Instrumentation.

[68]  A. McConnachie,et al.  Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.

[69]  MMT extremely metal-poor galaxy survey. I. An efficient technique for identifying metal-poor galaxies , 2007, 0709.4400.

[70]  V. Villar,et al.  The Hα-based Star Formation Rate Density of the Universe at z = 0.84 , 2007, 0712.4150.

[71]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[72]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[73]  L. Cowie,et al.  Mapping Extremely Low Metallicity Galaxies to Redshift One , 2007 .

[74]  L. Guzzo,et al.  The Hα Luminosity Function and Star Formation Rate at z ≈ 0.24 in the COSMOS 2 Square Degree Field , 2007, 0709.1009.

[75]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[76]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[77]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[78]  Tyson Hare,et al.  IMACS: the wide-field imaging spectrograph on Magellan-Baade , 2006, SPIE Astronomical Telescopes + Instrumentation.

[79]  T. Nagao,et al.  The Luminosity Function and Star Formation Rate between Redshifts of 0.07 and 1.47 for Narrowband Emitters in the Subaru Deep Field , 2006, astro-ph/0610846.

[80]  R. Maiolino,et al.  Gas metallicity diagnostics in star-forming galaxies , 2006, astro-ph/0603580.

[81]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[82]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[83]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[84]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[85]  S. Sakai,et al.  An Hα Imaging Survey of Galaxies in the Local 11 Mpc Volume , 2004, 0807.2035.

[86]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[87]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[88]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[89]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[90]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[91]  S. M. Fall,et al.  Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.

[92]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[93]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[94]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[95]  Ronald G. Probst,et al.  NEWFIRM: the widefield IR imager for NOAO 4-m telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[96]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[97]  S. Okamura,et al.  The Hα Luminosity Function and Star Formation Rate at z ≈ 0.24 Based on Subaru Deep Imaging Data , 2003, astro-ph/0302473.

[98]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[99]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[100]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[101]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[102]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[103]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[104]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[105]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[106]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[107]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[108]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[109]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[110]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[111]  S. McGaugh,et al.  H II region abundances - Model oxygen line ratios , 1991 .

[112]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[113]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .

[114]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[115]  E. Salpeter The Luminosity function and stellar evolution , 1955 .