THE RELATIONSHIP BETWEEN STELLAR MASS, GAS METALLICITY, AND STAR FORMATION RATE FOR Hα-SELECTED GALAXIES AT z ≈ 0.8 FROM THE NewHα SURVEY
暂无分享,去创建一个
M. Peeples | D. Dale | I. Momcheva | C. Ly | S. Salim | M. Ouchi | Janice C. Lee | R. Finn | Y. Ono | M. D. L. Reyes | J. Feddersen | Janice C. Lee
[1] G. Brammer,et al. CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.
[2] P. McCarthy,et al. PHYSICAL PROPERTIES OF EMISSION-LINE GALAXIES AT z ∼ 2 FROM NEAR-INFRARED SPECTROSCOPY WITH MAGELLAN FIRE , 2014, 1402.0510.
[3] Naoyuki Tamura,et al. The mass-metallicity relation at z ∼ 1.4 revealed with Subaru/FMOS ⋆ , 2013, 1311.2624.
[4] L. Kewley,et al. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. II. THE MASS–METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION , 2013, 1310.4950.
[5] A. Dekel,et al. Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies , 2013, 1305.2925.
[6] D. Weinberg,et al. A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.
[7] P. McCarthy,et al. LOW MASSES AND HIGH REDSHIFTS: THE EVOLUTION OF THE MASS–METALLICITY RELATION , 2013, 1309.4458.
[8] I. Smail,et al. A fundamental metallicity relation for galaxies at z = 0.84–1.47 from HiZELS , 2013, 1309.0506.
[9] T. Nagao,et al. “DIRECT” GAS-PHASE METALLICITIES, STELLAR PROPERTIES, AND LOCAL ENVIRONMENTS OF EMISSION-LINE GALAXIES AT REDSHIFTS BELOW 0.90 , 2013, 1307.7712.
[10] L. Kewley,et al. NEW STRONG-LINE ABUNDANCE DIAGNOSTICS FOR H ii REGIONS: EFFECTS OF κ-DISTRIBUTED ELECTRON ENERGIES AND NEW ATOMIC DATA , 2013, 1307.5950.
[11] L. Kewley,et al. MEASURING NEBULAR TEMPERATURES: THE EFFECT OF NEW COLLISION STRENGTHS WITH EQUILIBRIUM AND κ-DISTRIBUTED ELECTRON ENERGIES , 2013, 1306.2023.
[12] K. Finlator,et al. THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT INTERMEDIATE REDSHIFT , 2013, 1304.4239.
[13] K. Jahnke,et al. Mass-metallicity relation explored with CALIFA I. Is there a dependence on the star-formation rate? , 2013, 1304.2158.
[14] Michael J. Kurtz,et al. THE CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES OVER THE LAST 11 BILLION YEARS , 2013, 1303.5987.
[15] C. Carollo,et al. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.
[16] J. Richard,et al. TESTING THE UNIVERSALITY OF THE FUNDAMENTAL METALLICITY RELATION AT HIGH REDSHIFT USING LOW-MASS GRAVITATIONALLY LENSED GALAXIES , 2013, 1302.3614.
[17] B. Andrews,et al. THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.
[18] B. Garilli,et al. The cosmic evolution of oxygen and nitrogen abundances in star-forming galaxies over the past 10 Gyr , 2012, 1210.0334.
[19] G. Gavazzi,et al. The role of cold gas and environment on the stellar mass-metallicity relation of nearby galaxies , 2012, 1207.4191.
[20] R. Maiolino,et al. Scaling relations of metallicity, stellar mass and star formation rate in metal‐poor starbursts – I. A Fundamental Plane , 2012, 1209.1100.
[21] S. Salim,et al. STAR FORMATION RATE DISTRIBUTIONS: INADEQUACY OF THE SCHECHTER FUNCTION , 2012, 1209.0778.
[22] D. Dale,et al. NEBULAR ATTENUATION IN Hα-SELECTED STAR-FORMING GALAXIES AT z = 0.8 FROM THE NewHα SURVEY , 2012, 1207.5479.
[23] A. Hopkins,et al. On the 3D structure of the mass, metallicity, and SFR space for SF galaxies , 2012, 1207.0950.
[24] Benjamin D. Johnson,et al. DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES , 2012, 1205.6782.
[25] J. Walsh,et al. METALLICITIES OF EMISSION-LINE GALAXIES FROM HST ACS PEARS AND HST WFC3 ERS GRISM SPECTROSCOPY AT 0.6 < z < 2.4 , 2012, 1205.3172.
[26] G. Brammer,et al. THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.
[27] M. Dopita,et al. RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H ii REGIONS AND PLANETARY NEBULAE: κ-DISTRIBUTED ELECTRONS , 2012, 1204.3880.
[28] Naoyuki Tamura,et al. NIR Spectroscopy of Star-Forming Galaxies at z 1.4 with Subaru/FMOS: The Mass-Metallicity Relation , 2011, 1112.3704.
[29] L. Kewley,et al. THE METALLICITY EVOLUTION OF INTERACTING GALAXIES , 2011, 1107.0001.
[30] V. Wild,et al. Evolution of the Stellar Mass-Metallicity Relation Since z=0.75 , 2011, 1112.3300.
[31] F. Mannucci,et al. The metallicity properties of zCOSMOS galaxies at 0.2 < z < 0.8 , 2011, 1110.4408.
[32] S. Bamford,et al. Galaxy And Mass Assembly: Stellar Mass Estimates , 2011, 1108.0635.
[33] D. Koo,et al. STAR FORMATION RATES AND STELLAR MASSES OF Hα SELECTED STAR-FORMING GALAXIES AT z = 0.84: A QUANTIFICATION OF THE DOWNSIZING , 2011, 1107.4371.
[34] G. Kauffmann,et al. The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.
[35] M. Dickinson,et al. A NEW DIAGNOSTIC OF ACTIVE GALACTIC NUCLEI: REVEALING HIGHLY ABSORBED SYSTEMS AT REDSHIFT >0.3 , 2011, 1105.3194.
[36] Davis,et al. A CENSUS OF STAR-FORMING GALAXIES AT z = 1–3 IN THE SUBARU DEEP FIELD , 2011, 1104.5019.
[37] K. Finlator,et al. Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.
[38] Benjamin D. Johnson,et al. A GALEX ULTRAVIOLET IMAGING SURVEY OF GALAXIES IN THE LOCAL VOLUME , 2010, 1009.4705.
[39] L. Kewley,et al. THE MASS–METALLICITY AND LUMINOSITY–METALLICITY RELATIONS FROM DEEP2 AT z ∼ 0.8 , 2010, 1006.4877.
[40] M. Swinbank,et al. The emission line properties of gravitationally lensed 1.5 < z < 5 galaxies , 2010, 1011.6413.
[41] F. Mannucci,et al. The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.
[42] U. Wyoming,et al. THE Hα LUMINOSITY FUNCTION AND STAR FORMATION RATE VOLUME DENSITY AT z = 0.8 FROM THE NEWFIRM Hα SURVEY , 2010, 1011.2759.
[43] M. Peeples,et al. Constraints on star formation driven galaxy winds from the mass–metallicity relation at z= 0 , 2010, 1007.3743.
[44] M. S'anchez-Portal,et al. A fundamental plane for field star-forming galaxies , 2010, 1005.0509.
[45] J. V'ilchez,et al. ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE “GREEN PEA” GALAXIES , 2010, 1004.4910.
[46] Bernd Freytag,et al. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.
[47] A. Dekel,et al. On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.
[48] Marijn Franx,et al. THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.
[49] B. Weiner,et al. SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .
[50] Shy Genel,et al. THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.
[51] T. Treu,et al. LYMAN BREAK GALAXIES AT z ≈ 1.8–2.8: GALEX/NUV IMAGING OF THE SUBARU DEEP FIELD , 2009, 0902.4712.
[52] F. Mannucci,et al. LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.
[53] B. Milliard,et al. Photometry in UV astronomical images of extended sources in crowded field using deblended images in optical visible bands as Bayesian priors , 2009, Electronic Imaging.
[54] L. Cowie,et al. DEEP SPECTROSCOPY OF ULTRA-STRONG EMISSION-LINE GALAXIES , 2009, 0902.0336.
[55] Oxford,et al. HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.
[56] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[57] J. Brinchmann,et al. Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey - I. The evolution of the mass-metallicity relation up to z ~ 0.9 , 2008, 0811.2053.
[58] Heidelberg,et al. IMAGES IV* : strong evolution of the oxygen abundance in gaseous phases of intermediate mass galaxies from z ∼ 0.8 , 2008, 0810.0272.
[59] J. Gunn,et al. THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .
[60] Ronald G. Probst,et al. First light with NEWFIRM , 2008, Astronomical Telescopes + Instrumentation.
[61] L. Cowie,et al. Accepted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj AN INTEGRATED PICTURE OF STAR FORMATION, METALLICITY EVOLUTION, AND GALACTIC STELLAR MASS ASSEMBLY 1 , 2022 .
[62] D. Elbaz,et al. A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.
[63] K. Stanek,et al. Outliers from the Mass-Metallicity Relation. I. A Sample of Metal-Rich Dwarf Galaxies from SDSS , 2008, 0804.2671.
[64] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[65] S. Okamura,et al. The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.
[66] L. Kewley,et al. Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.
[67] Robert Barkhouser,et al. The FourStar infrared camera , 2007, Astronomical Telescopes + Instrumentation.
[68] A. McConnachie,et al. Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.
[69] MMT extremely metal-poor galaxy survey. I. An efficient technique for identifying metal-poor galaxies , 2007, 0709.4400.
[70] V. Villar,et al. The Hα-based Star Formation Rate Density of the Universe at z = 0.84 , 2007, 0712.4150.
[71] A. Cimatti,et al. NICMOS measurements of the near-infrared background , 2007, 0712.2880.
[72] A. Szalay,et al. The Calibration and Data Products of GALEX , 2007 .
[73] L. Cowie,et al. Mapping Extremely Low Metallicity Galaxies to Redshift One , 2007 .
[74] L. Guzzo,et al. The Hα Luminosity Function and Star Formation Rate at z ≈ 0.24 in the COSMOS 2 Square Degree Field , 2007, 0709.1009.
[75] Benjamin D. Johnson,et al. UV Star Formation Rates in the Local Universe , 2007, 0704.3611.
[76] J. Starck,et al. The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.
[77] Columbia,et al. Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.
[78] Tyson Hare,et al. IMACS: the wide-field imaging spectrograph on Magellan-Baade , 2006, SPIE Astronomical Telescopes + Instrumentation.
[79] T. Nagao,et al. The Luminosity Function and Star Formation Rate between Redshifts of 0.07 and 1.47 for Narrowband Emitters in the Subaru Deep Field , 2006, astro-ph/0610846.
[80] R. Maiolino,et al. Gas metallicity diagnostics in star-forming galaxies , 2006, astro-ph/0603580.
[81] C. Steidel,et al. The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.
[82] H.-W. Chen,et al. ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .
[83] A. Szalay,et al. The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.
[84] C. Maraston. Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.
[85] S. Sakai,et al. An Hα Imaging Survey of Galaxies in the Local 11 Mpc Volume , 2004, 0807.2035.
[86] L. Kewley,et al. Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.
[87] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[88] M. Pettini,et al. [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.
[89] J. Brinkmann,et al. The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.
[90] Timothy M. Heckman,et al. The host galaxies of active galactic nuclei , 2003 .
[91] S. M. Fall,et al. Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.
[92] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[93] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[94] J. Brinkmann,et al. The Host Galaxies of AGN , 2003, astro-ph/0304239.
[95] Ronald G. Probst,et al. NEWFIRM: the widefield IR imager for NOAO 4-m telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.
[96] Stephan Aune,et al. MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.
[97] S. Okamura,et al. The Hα Luminosity Function and Star Formation Rate at z ≈ 0.24 Based on Subaru Deep Imaging Data , 2003, astro-ph/0302473.
[98] Marc Davis,et al. Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.
[99] S. Okamura,et al. Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.
[100] Ralf Bender,et al. THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.
[101] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[102] S. M. Fall,et al. A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.
[103] Jr.,et al. STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[104] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[105] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[106] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[107] Piero Madau,et al. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .
[108] A. Kinney,et al. Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .
[109] J. E. O'Donnell. R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .
[110] J. Huchra,et al. H II regions and the abundance properties of spiral galaxies , 1994 .
[111] S. McGaugh,et al. H II region abundances - Model oxygen line ratios , 1991 .
[112] J. Baldwin,et al. ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .
[113] Bernard E. J. Pagel,et al. On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .
[114] J. B. Oke. Absolute spectral energy distributions for white dwarfs , 1974 .
[115] E. Salpeter. The Luminosity function and stellar evolution , 1955 .