A Simple Post-Polymerization Modification Method for Controlling Side-Chain Information in Digital Polymers.

A three-step post-polymerization modification method was developed for the design of digitally encoded poly(phosphodiester)s with controllable side groups. Sequence-defined precursors were synthesized, either manually on polystyrene resins or automatically on controlled pore glass supports, using two phosphoramidite monomers containing either terminal alkynes or triisopropylsilyl (TIPS) protected alkyne side groups. Afterwards, these polymers were modified by stepwise copper-catalyzed azide-alkyne cycloaddition (CuAAC). The terminal alkynes were first reacted with a model azide compound, and after removal of the TIPS groups, the remaining alkynes were reacted with another organic azide. This simple method allows for quantitative side-chain modification, thus opening up interesting avenues for the preparation of a wide variety of digital polymers.

[1]  T. H. Vaughn,et al.  The Direct Iodination of Monosubstituted Acetylenes , 1933 .

[2]  H. Sleiman,et al.  Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space. , 2014, Journal of the American Chemical Society.

[3]  Lei Zhu,et al.  Mechanism of Copper(I)-Catalyzed 5-Iodo-1,2,3-triazole Formation from Azide and Terminal Alkyne. , 2015, The Journal of organic chemistry.

[4]  Jean-François Lutz,et al.  Preparation of Information-Containing Macromolecules by Ligation of Dyad-Encoded Oligomers. , 2015, Chemistry.

[5]  Jean-François Lutz,et al.  Orthogonal Synthesis of "Easy-to-Read" Information-Containing Polymers Using Phosphoramidite and Radical Coupling Steps. , 2016, Journal of the American Chemical Society.

[6]  Robert N Grass,et al.  Robust chemical preservation of digital information on DNA in silica with error-correcting codes. , 2015, Angewandte Chemie.

[7]  J. Lutz,et al.  Reading polymers: sequencing of natural and synthetic macromolecules. , 2014, Angewandte Chemie.

[8]  Jean-François Lutz,et al.  1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. , 2007, Angewandte Chemie.

[9]  G. Church,et al.  Next-Generation Digital Information Storage in DNA , 2012, Science.

[10]  Jean-François Lutz,et al.  Design and synthesis of digitally encoded polymers that can be decoded and erased , 2015, Nature Communications.

[11]  Jean-François Lutz,et al.  Synthesis of Monodisperse Sequence-Coded Polymers with Chain Lengths above DP100. , 2015, ACS macro letters.

[12]  S. Fort,et al.  Synthesis of single-chain sugar arrays. , 2013, Angewandte Chemie.

[13]  Michael D. Daily,et al.  Triazine‐Based Sequence‐Defined Polymers with Side‐Chain Diversity and Backbone–Backbone Interaction Motifs , 2016, Angewandte Chemie.

[14]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[15]  Enzymatic Synthesis of Sequence-Defined Synthetic Nucleic Acid Polymers with Diverse Functional Groups. , 2016, Angewandte Chemie.

[16]  Clemens Mayer,et al.  An Epigenetics‐Inspired DNA‐Based Data Storage System , 2016, Angewandte Chemie.

[17]  Reinhard Heckel,et al.  Robuste chemische Speicherung von digitalen Informationen auf DNA in Silicat unter Verwendung fehlerkorrigierender Codes , 2015 .

[18]  Junji Zhang,et al.  Nanoporentechniken zur Sequenzierung und Detektion von Nukleinsäuren , 2013 .

[19]  J. Martins,et al.  Multifunctionalized sequence-defined oligomers from a single building block. , 2013, Angewandte Chemie.

[20]  Michael A R Meier,et al.  Sequence control in polymer chemistry through the Passerini three-component reaction. , 2014, Angewandte Chemie.

[21]  Jean-François Lutz,et al.  Synthesis of molecularly encoded oligomers using a chemoselective "AB + CD" iterative approach. , 2014, Macromolecular rapid communications.

[22]  Rui Gao,et al.  Nanopore-based sequencing and detection of nucleic acids. , 2013, Angewandte Chemie.

[23]  Hassan S. Bazzi,et al.  “DNA–Teflon” sequence-controlled polymers , 2016 .

[24]  J. Lutz,et al.  Convergent synthesis of digitally-encoded poly(alkoxyamine amide)s. , 2015, Chemical Communications.

[25]  Michael A. R. Meier,et al.  Sequenzkontrolle in der Polymerchemie mithilfe der Passerini‐ Dreikomponentenreaktion , 2014 .

[26]  T. Carell,et al.  Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. , 2008, Angewandte Chemie.

[27]  T. Carell,et al.  Click-click-click: single to triple modification of DNA. , 2008, Angewandte Chemie.

[28]  Michael A. R. Meier,et al.  Eine skalierbare Synthese sequenzdefinierter Makromoleküle mit hohen Ausbeuten , 2016 .

[29]  Olgica Milenkovic,et al.  Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence-Coded Polymer Barcodes. , 2016, Angewandte Chemie.

[30]  Ewan Birney,et al.  Towards practical, high-capacity, low-maintenance information storage in synthesized DNA , 2013, Nature.

[31]  Reza M Zadegan,et al.  Nucleic acid memory. , 2016, Nature materials.

[32]  Jean-François Lutz,et al.  Coding Macromolecules: Inputting Information in Polymers Using Monomer-Based Alphabets , 2015 .

[33]  H. Sleiman,et al.  An efficient and modular route to sequence-defined polymers appended to DNA. , 2014, Angewandte Chemie.

[34]  Robert N. Grass,et al.  Particles with an identity: Tracking and tracing in commodity products , 2016 .

[35]  Jean-François Lutz,et al.  Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. , 2015, Journal of the American Chemical Society.

[36]  R. Häner,et al.  Oligopyrenotides: abiotic, polyanionic oligomers with nucleic acid-like structural properties. , 2010, Journal of the American Chemical Society.

[37]  David R. Liu,et al.  Sequence-Controlled Polymers , 2013, Science.

[38]  M. Meier,et al.  A Scalable and High-Yield Strategy for the Synthesis of Sequence-Defined Macromolecules. , 2016, Angewandte Chemie.

[39]  Simon Warncke,et al.  Klick‐Klick‐Klick: Ein‐ bis Dreifachmodifizierung von DNA , 2008 .

[40]  J. Lutz,et al.  “Lesen” von Polymeren: Die Sequenzierung natürlicher und synthetischer Makromoleküle , 2014 .

[41]  Daniel G. Anderson,et al.  Sequence-Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications. , 2016, Angewandte Chemie.

[42]  Yaniv Erlich,et al.  DNA Fountain enables a robust and efficient storage architecture , 2016, Science.

[43]  Philipp M. E. Gramlich,et al.  Postsynthetische DNA‐Modifizierung mithilfe der kupferkatalysierten Azid‐Alkin‐Cycloaddition , 2008 .

[44]  Didier Gigmes,et al.  Chemoselective Synthesis of Uniform Sequence-Coded Polyurethanes and Their Use as Molecular Tags , 2016 .

[45]  J. Lutz 1,3‐Dipolare Cycloaddition von Aziden und Alkinen: eine universelle Ligationsmethode in den Polymer‐ und Materialwissenschaften , 2007 .

[46]  Jean-François Lutz,et al.  Identification‐Tagging of Methacrylate‐Based Intraocular Implants Using Sequence Defined Polyurethane Barcodes , 2017 .

[47]  Jean-François Lutz,et al.  Information-containing macromolecules. , 2014, Nature chemistry.