Modelling confined multi-material heat and mass flows using SPH

Abstract Many applications in mineral and metal processing involve complex flows of multiple liquids and gases coupled with heat transfer. The motion of the surfaces of the liquids can involve sloshing, splashing and fragmentation. Substantially differing material properties are common. The flows are frequently complicated by other physical effects. Smoothed particle hydrodynamics (SPH) is a computational modelling technique that is ideally suited to such difficult flows. The Lagrangian framework means that momentum dominated flows and flows with complicated material interface behaviours are handled easily and naturally. To be able to model complex multi-physics flows, many aspects of SPH need to be explored. In this paper we describe developments that allow conductive and convective heat transfer to be modelled accurately for a sequence of idealised test problems.