An invitation to higher gauge theory

In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge ‘2-group’. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincaré 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a ‘tangent 2-group’, which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an ‘inner automorphism 2-group’, which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an ‘automorphism 2-group’, which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a ‘string 2-group’. We also touch upon higher structures such as the ‘gravity 3-group’, and the Lie 3-superalgebra that governs 11-dimensional supergravity.

[1]  L. Breen Notes on 1- and 2-Gerbes , 2006, math/0611317.

[2]  E. Witten The index of the dirac operator in loop space , 1988 .

[3]  A. Baratin,et al.  2-Group Representations for Spin Foams , 2009, 0910.1542.

[4]  P. Landweber,et al.  Elliptic Curves and Modular Forms in Algebraic Topology , 1988 .

[5]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[6]  2-categorical Poincare Representations and State Sum Applications , 2003, math/0306440.

[7]  Urs Schreiber,et al.  Parallel Transport and Functors , 2007, 0705.0452.

[8]  K. Gawȩdzki Topological Actions in Two-Dimensional Quantum Field Thories , 1988 .

[9]  The homology groups of some two-step nilpotent Lie algebras associated to symplectic vector spaces , 1999, math/9903147.

[10]  Four-dimensional BF theory as a topological quantum field theory , 1995, q-alg/9507006.

[11]  Christopher L. Rogers,et al.  Categorified symplectic geometry and the string Lie 2-algebra , 2009, 0901.4721.

[12]  State-Sum Invariants of 4-Manifolds , 1994, hep-th/9409167.

[13]  R. Picken,et al.  The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module , 2009, 0907.2566.

[14]  H. Sati,et al.  L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.

[15]  D. Freed,et al.  Anomalies in string theory with D-branes , 1999, hep-th/9907189.

[16]  G. Hooft,et al.  Nonperturbative quantum field theory , 1988 .

[17]  S. Maclane,et al.  General theory of natural equivalences , 1945 .

[18]  J. Benabou Introduction to bicategories , 1967 .

[19]  K. Noui,et al.  Canonical analysis of algebraic string actions , 2009, 0908.0953.

[20]  Representation theory of 2-groups on finite dimensional 2-vector spaces , 2004, math/0408120.

[21]  CATEGORICAL REPRESENTATIONS OF CATEGORICAL GROUPS , 2004, math/0407463.

[22]  J. Stasheff,et al.  The Lie algebra structure of tangent cohomology and deformation theory , 1985 .

[23]  Higher gauge theory — differential versus integral formulation , 2003, hep-th/0309173.

[24]  M. Duff Supermembranes: the first fifteen weeks , 1988 .

[25]  Functional integration on spaces of connections , 1995, q-alg/9507023.

[26]  Alejandro Perez,et al.  Extended matter coupled to BF theory , 2007, 0709.4235.

[27]  A. Ashtekar,et al.  Institute for Mathematical Physics Differential Geometry on the Space of Connections via Graphs and Projective Limits Differential Geometry on the Space of Connections via Graphs and Projective Limits , 2022 .

[28]  A. Baratin,et al.  Infinite-Dimensional Representations of 2-Groups , 2008, 0812.4969.

[29]  Théophile De Donder,et al.  Théorie invariantive du calcul des variations , 1936 .

[30]  R. Picken,et al.  A Cubical Set Approach to 2-Bundles with Connection and Wilson Surfaces , 2008, 0808.3964.

[31]  Integrating $L_\infty $-algebras , 2006, Compositio Mathematica.

[32]  L. Freidel,et al.  Ponzano–Regge model revisited: I. Gauge fixing, observables and interacting spinning particles , 2004, hep-th/0401076.

[33]  P. Fré,et al.  Supergravity and Superstrings: A Geometric Perspective , 1991 .

[34]  WZW BRANES AND GERBES , 2002, hep-th/0205233.

[35]  J. Whitehead Note on a Previous Paper Entitled On Adding Relations to Homotopy Groups , 1946 .

[36]  Dmitry Roytenberg On weak Lie 2‐algebras , 2007, 0712.3461.

[37]  Two-dimensional models with (0,2) supersymmetry: perturbative aspects , 2005, hep-th/0504078.

[38]  F. Linton,et al.  Categories et Structures. , 1968 .

[39]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[40]  P. Teichner,et al.  Topology, Geometry and Quantum Field Theory: What is an elliptic object? , 2004 .

[41]  A. Baratin,et al.  Hidden quantum gravity in 4D Feynman diagrams: emergence of spin foams , 2006, hep-th/0611042.

[42]  An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.

[43]  Toby Bartels Higher gauge theory I: 2-Bundles , 2004 .

[44]  John Huerta Division Algebras and Supersymmetry IV , 2010, 1409.4361.

[45]  F. Girelli,et al.  Topological higher gauge theory: From BF to BFCG theory , 2007, 0708.3051.

[46]  J. Brylinski,et al.  The geometry of degree-four characteristic classes and of line bundles on loop spaces I , 1994 .

[47]  M. Murray An introduction to bundle gerbes , 2007, 0712.1651.

[48]  U. Schreiber,et al.  The inner automorphism 3-group of a strict 2-group , 2007, 0708.1741.

[49]  H. Gausterer,et al.  Geometry and Quantum Physics , 2000 .

[50]  A. Baratin,et al.  Hidden quantum gravity in 3D Feynman diagrams , 2006, gr-qc/0604016.

[51]  R. Picken,et al.  On two-dimensional holonomy , 2007, 0710.4310.

[52]  Higgs Fields, Bundle Gerbes and String Structures , 2001, math/0106179.

[53]  S. Lack A 2-Categories Companion , 2007, math/0702535.

[54]  Representation theory of 2-groups on Kapranov and Voevodsky's 2-vector spaces , 2007 .

[55]  Christopher J. Schommer-Pries Central extensions of smooth 2–groups and a finite-dimensional string 2–group , 2009, 0911.2483.

[56]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[57]  Stephen Lack,et al.  Categories in Algebra, Geometry and Mathematical Physics , 2007 .

[58]  J. Baez,et al.  The Classifying Space of a Topological 2-Group , 2008, 0801.3843.

[59]  U. Schreiber,et al.  Smooth functors vs. differential forms , 2008, 0802.0663.

[60]  F. Borceux Handbook Of Categorical Algebra 1 Basic Category Theory , 2008 .

[61]  Aaron D. Lauda,et al.  A Prehistory of n-Categorical Physics , 2009, 0908.2469.

[62]  Martin Markl,et al.  Operads in algebra, topology, and physics , 2002 .

[63]  Exotic statistics for strings in 4d BF theory , 2006, gr-qc/0603085.

[64]  B. Eckmann,et al.  Group-like structures in general categories I multiplications and comultiplications , 1962 .

[65]  Ponzano-Regge model revisited II: Equivalence with Chern-Simons , 2004, gr-qc/0410141.

[66]  Hermann Weyl,et al.  Geodesic Fields in the Calculus of Variation for Multiple Integrals , 1935 .

[67]  L. Breen Differential Geometry of Gerbes and Differential Forms , 2008, 0802.1833.

[68]  S. Maclane,et al.  On the 3-Type of a Complex. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Eugene Lerman,et al.  Orbifolds as stacks , 2008, 0806.4160.

[70]  E. Livine,et al.  Ponzano–Regge model revisited: III. Feynman diagrams and effective field theory , 2005, hep-th/0502106.

[71]  Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory , 2003, hep-th/0312154.

[72]  Aaron D. Lauda,et al.  Higher-Dimensional Algebra V: 2-Groups , 2003 .

[73]  Alejandro Perez,et al.  Two-dimensional topological field theories coupled to four-dimensional BF theory , 2007, 0711.2875.

[74]  R. Picken,et al.  Holonomy and parallel transport for Abelian gerbes , 2000, math/0007053.

[75]  J. Whitehead,et al.  Combinatorial homotopy. II , 1949 .

[76]  John C. Baez,et al.  Spin foam models , 1997, gr-qc/9709052.

[77]  P. Fré,et al.  Supergravity and superstrings: A Geometric perspective. Vol. 3: Superstrings , 1991 .

[78]  P. Fré,et al.  Supergravity and Superstrings: A Geometric Perspective: (In 3 Volumes) , 1991 .

[79]  Ezra Getzler Lie theory for nilpotent L∞-algebras , 2004 .

[80]  Louis Crane,et al.  Measurable Categories and 2-Groups , 2005, Appl. Categorical Struct..

[81]  Jerrold E. Marsden,et al.  Momentum maps and classical relativistic fields. Part 1: Covariant Field Theory , 1998, physics/9801019.

[82]  A. Power,et al.  A 2-categorical pasting theorem , 1990 .

[83]  Group Objects and Internal Categories , 2002, math/0212065.

[84]  K. Waldorf String connections and Chern-Simons theory , 2009, 0906.0117.

[85]  Higher gauge theory , 2005, math/0511710.

[86]  Path integration in phase space , 1977 .

[87]  Higher gauge theory and a non-Abelian generalization of 2-form electrodynamics , 2003, hep-th/0304074.

[88]  John C. Baez,et al.  Higher-Dimensional Algebra VI: Lie 2-Algebras , 2003, math/0307263.

[89]  B. Jurčo,et al.  The classifying topos of a topological bicategory , 2009, 0902.1750.

[90]  Urs Schreiber,et al.  Connections on non-abelian Gerbes and their Holonomy , 2008, 0808.1923.

[91]  Alissa S. Crans,et al.  From loop groups to 2-groups , 2005, math/0504123.

[92]  John C. Baez,et al.  Categorified Symplectic Geometry and the Classical String , 2008, 0808.0246.

[93]  John C. Baez,et al.  Towards Higher Categories , 2010 .

[94]  The Geometry of Bundle Gerbes , 2000, math/0004117.

[95]  Differentiable Cohomology of Gauge Groups , 2000, math/0011069.

[96]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[97]  Differential geometry of gerbes , 2001, math/0106083.

[99]  Louis Crane,et al.  A CATEGORICAL CONSTRUCTION OF 4D TOPOLOGICAL QUANTUM FIELD THEORIES , 2008 .

[100]  Ieke Moerdijk,et al.  Introduction to the Language of Stacks and Gerbes , 2002, math/0212266.

[101]  Michael Johnson,et al.  The combinatorics of n-categorical pasting☆ , 1989 .

[102]  A. P. Balachandran,et al.  A new approach to strings and superstrings , 1986 .