Nonrandom spatial structuring of orchids in a hybrid zone of three Orchis species.

• Nonrandom species-species associations may arise from a range of factors, including localized dispersal, intra- and interspecific interactions and heterogeneous environmental conditions. Because seed germination and establishment in orchids are critically dependent upon the availability of suitable mycorrhizal fungi, species-species associations in orchids may reflect associations with mycorrhizal fungi. • To test this hypothesis, we examined spatial association patterns, mycorrhizal associations and germination success in a hybrid zone containing three species of the genus Orchis (Orchis anthropophora, Orchis militaris and Orchis purpurea). • Hybridization occurred predominantly between O. purpurea and O. militaris. The spatial distribution patterns of most pure species and hybrids were independent from each other, except that of O. purpurea and its hybrids. The fungal community composition of established individuals differed significantly between pure species, but not between hybrids and O. purpurea. Seed germination experiments using pure seeds showed that the highest number of protocorms were found in regions where adult individuals were most abundant. In the case of hybrid seeds, germination was restricted to areas where the mother plant was most abundant. • Overall, these results suggest that the observed nonrandom spatial distribution of both pure and hybrid plants is dependent on the contingencies of the spatial distribution of suitable mycorrhizal fungi.

[1]  D. Tyteca,et al.  Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). , 2011, The New phytologist.

[2]  R. Brys,et al.  Mycorrhizal associations and reproductive isolation in three closely related Orchis species. , 2011, Annals of botany.

[3]  R. Brys,et al.  Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis , 2010, Molecular ecology.

[4]  M. Fay,et al.  Hybridization and introgression across different ploidy levels in the Neotropical orchids Epidendrum fulgens and E. puniceoluteum (Orchidaceae) , 2010, Molecular ecology.

[5]  D. Whigham,et al.  Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae , 2009 .

[6]  A. Musacchio,et al.  Genetic integrity of sympatric hybridising plant species: the case of Orchis italica and O. anthropophora. , 2009, Plant biology.

[7]  T. Wiegand,et al.  Multigenerational analysis of spatial structure in the terrestrial, food‐deceptive orchid Orchis mascula , 2009 .

[8]  H. Rasmussen,et al.  Orchid mycorrhiza: implications of a mycophagous life style , 2009 .

[9]  R. Petit,et al.  Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex) , 2009, Heredity.

[10]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[11]  J. Jersáková,et al.  Spatial aspects of seed dispersal and seedling recruitment in orchids. , 2007, The New phytologist.

[12]  T. Wiegand,et al.  A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. , 2007, The New phytologist.

[13]  Thorsten Wiegand,et al.  Species Associations in a Heterogeneous Sri Lankan Dipterocarp Forest , 2007, The American Naturalist.

[14]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: dominant markers and null alleles , 2007, Molecular ecology notes.

[15]  Monica G. Turner,et al.  Filling key gaps in population and community ecology , 2007 .

[16]  A. Widmer,et al.  The strength of reproductive isolation in two hybridizing food‐deceptive orchid species , 2007, Molecular ecology.

[17]  J. Diez Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients , 2007 .

[18]  A. Tscheschel,et al.  Statistical reconstruction of random point patterns , 2006, Comput. Stat. Data Anal..

[19]  P. Dixon Ripley's K Function , 2006 .

[20]  E. D. Ford,et al.  Statistical inference using the g or K point pattern spatial statistics. , 2006, Ecology.

[21]  R. Brys,et al.  Fine‐scale genetic structure of life history stages in the food‐deceptive orchid Orchis purpurea , 2006, Molecular ecology.

[22]  A. Widmer,et al.  Hybridization and conservation of Mediterranean orchids: Should we protect the orchid hybrids or the orchid hybrid zones? , 2006 .

[23]  Dietrich Stoyan,et al.  On Estimators of the Nearest Neighbour Distance Distribution Function for Stationary Point Processes , 2006 .

[24]  J. Otero,et al.  Orchid diversity--beyond deception. , 2006, Trends in ecology & evolution.

[25]  B. Schatz Fine scale distribution of pollinator explains the occurrence of the natural orchid hybrid ×Orchis bergonii , 2006 .

[26]  C. Primmer,et al.  Efficiency of model‐based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci , 2005, Molecular ecology.

[27]  M. Chung,et al.  Patterns of hybridization and population genetic structure in the terrestrial orchids Liparis kumokiri and Liparis makinoana (Orchidaceae) in sympatric populations , 2005, Molecular ecology.

[28]  M. Chung,et al.  Spatial genetic structure in populations of the terrestrial orchid Orchis cyclochila (Orchidaceae) , 2005, Plant Systematics and Evolution.

[29]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[30]  Thorsten Wiegand,et al.  Rings, circles, and null-models for point pattern analysis in ecology , 2004 .

[31]  R. Pélissier,et al.  Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses , 2003 .

[32]  M. Chase,et al.  Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae) , 2003 .

[33]  D. Read,et al.  Symbiotic germination and development of the myco‐heterotrophic orchid Neottia nidus‐avis in nature and its requirement for locally distributed Sebacina spp. , 2002 .

[34]  K. Dixon,et al.  Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. , 2001, The New phytologist.

[35]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[36]  A. Depicker,et al.  AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.) , 2000, Molecular Breeding.

[37]  D. Read,et al.  Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. , 2000, The New phytologist.

[38]  Frank Mücklich,et al.  Statistical Analysis of Microstructures in Materials Science , 2000 .

[39]  Mark Rees,et al.  Identifying aggregation and association in fully mapped spatial data , 1999 .

[40]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[41]  G. Masuhara,et al.  In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames, var. amoena (M. Bieberstein) Hara (Orchidaceae). , 1994, The New phytologist.

[42]  D. Whigham,et al.  Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids , 1993 .

[43]  Kenneth J. Berry,et al.  Data-dependent permutation techniques for the analysis of ecological data , 1988, Vegetatio.

[44]  L. Farrell Biological flora of the British Isles: Orchis militaris L. (O. galatea Poir., O. rivini Gouan, O. tephrosanthos Willd. & Sw.) , 1985 .

[45]  Francis K C Hui,et al.  The arcsine is asinine: the analysis of proportions in ecology. , 2011, Ecology.

[46]  H. Jacquemyn,et al.  From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. , 2010, Journal of Microbiological Methods.

[47]  K. Dixon,et al.  If Orchids Mycorrhizal Fungi Are So Specific, How Do Natural Hybrids Cope? , 2005 .

[48]  Aubière Cedex,et al.  Avoiding misinterpretation of biotic interactions with the intertype K 12 -function: population independence vs. random labelling hypotheses , 2003 .

[49]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[50]  N. V. D. Cingel An Atlas of Orchid Pollination: European Orchids , 1995 .

[51]  K. Hanisch,et al.  Some remarks on estimators of the distribution function of nearest neighbour distance in stationary spatial point processes , 1984 .