On the degree of univariate polynomials over the integers

We study the following problem raised by von zur Gathen and Roche [GR97]: <i>What is the minimal degree of a nonconstant polynomial f</i>: {0,...,<i>n</i>} → {0,...,<i>m</i>}<i>?</i> Clearly, when <i>m</i> = <i>n</i> the function <i>f</i>(<i>x</i>) = <i>x</i> has degree 1. We prove that when <i>m</i> = <i>n</i> - 1 (i.e. the point {<i>n</i>} is not in the range), it must be the case that deg(<i>f</i>) = <i>n</i> - <i>o</i>(<i>n</i>). This shows an interesting threshold phenomenon. In fact, the same bound on the degree holds even when the image of the polynomial is any (strict) subset of {0,...,<i>n</i>}. Going back to the case <i>m</i> = <i>n</i>, as we noted the function <i>f</i>(<i>x</i>) = <i>x</i> is possible, however, we show that if one excludes all degree 1 polynomials then it must be the case that deg(<i>f</i>) = <i>n</i> - <i>o</i>(<i>n</i>). Moreover, the same conclusion holds even if <i>m</i> = <i>O</i>(<i>n</i><sup>1.475--ε</sup>). In other words, there are no polynomials of intermediate degrees that map {0,...,<i>n</i>} to {0,...,<i>m</i>}. Furthermore, we give a meaningful answer when <i>m</i> is a large polynomial, or even exponential, in <i>n</i>. Roughly, we show that if <i>m</i> < (<sup><i>n</i>/<i>c</i></sup> <sub><i>d</i></sub>), for some constant <i>c</i>, then either deg(<i>f</i>) ≤ <i>d</i> - 1 (e.g. <i>f</i>(<i>x</i>) = (<sup><i>x</i>-<i>n</i>/2</sup><sub><i>d</i> - 1</sub>) is possible) or deg(<i>f</i>) ≥ <i>n</i>/3 - <i>O</i>(<i>d</i> log <i>n</i>). So, again, no polynomial of intermediate degree exists for such <i>m</i>. We achieve this result by studying a discrete version of the problem of giving a lower bound on the minimal <i>L</i><sub>∞</sub>, norm that a monic polynomial of degree <i>d</i> obtains on the interval [-1,1]. We complement these results by showing that for every <i>d</i> = <i>o</i>(√<i>n</i>/log <i>n</i>) there exists a polynomial <i>f</i>: {0,...,<i>n</i>} → {0,...,<i>O</i>(<i>n</i><sup><i>d</i>+0.5</sup>)} of degree <i>n</i>/3 - <i>O</i>(<i>d</i> log <i>n</i>) ≤ deg(<i>f</i>) ≤ <i>n</i> - <i>O</i>(<i>d</i> log (<i>n</i>)). Our proofs use a variety of techniques that we believe will find other applications as well. One technique shows how to handle a certain set of diophantine equations by working modulo a well chosen set of primes (i.e. a Boolean cube of primes). Another technique shows how to use lattice theory and Minkowski's theorem to prove the existence of a polynomial with certain properties.

[1]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[2]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[3]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[4]  Richard J. Lipton,et al.  Computing with polynomials over composites , 2006 .

[5]  Harald Cramér,et al.  On the order of magnitude of the difference between consecutive prime numbers , 1936 .

[6]  Avishay Tal,et al.  On the minimal fourier degree of symmetric Boolean functions , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[7]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[8]  Robert Vein,et al.  Determinants and their applications in mathematical physics , 1998 .

[9]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[10]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[11]  Nisheeth K. Vishnoi,et al.  On the Fourier spectrum of symmetric Boolean functions , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[12]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[13]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[14]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[15]  Ryan O'Donnell,et al.  Learning functions of k relevant variables , 2004, J. Comput. Syst. Sci..

[16]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[17]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[18]  J. Maynard On the difference between consecutive primes , 2012, 1201.1787.

[19]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[20]  J. Pintz,et al.  The Difference Between Consecutive Primes, II , 2001 .

[21]  Joachim von zur Gathen,et al.  Polynomials with two values , 1997, Comb..

[22]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[23]  É. Lucas Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .