Contrast sensitivity in images of natural scenes

Abstract The contrast sensitivity function (CSF) characterizes spatial detection in the human visual system and is typically measured from simple, synthetic stimuli. We used spatial frequency decomposition, RMS contrast modulation, a yes/no paradigm and an adaptive staircase to measure isolated and contextual CSFs (iCSFs and cCSFs) from natural images. We employed Barten’s mechanistic model and adapted it for contextual modeling purposes by postulating that, signal detection in a given frequency band, when presented amongst other broadband signals, can be modeled as if amongst noise. We found that the iCSF varies with pictorial content, but that the standard CSF model and the image’s contrast spectrums are sufficient to predict with relative success the cCSF for any given image. We finally discuss the suitability of cCSF models in image quality modeling.

[1]  H. Robbins A Stochastic Approximation Method , 1951 .

[2]  Mark D. Fairchild,et al.  On Contrast Sensitivity in an Image Difference Model , 2002, PICS.

[3]  Brian A. Wandell,et al.  A spatial extension of CIELAB for digital color‐image reproduction , 1997 .

[4]  Roy S. Berns,et al.  An investigation of the effect of image size on the color appearance of softcopy reproductions using a contrast matching technique , 2007, Electronic Imaging.

[5]  J. Movshon,et al.  Analysis of the development of spatial contrast sensitivity in monkey and human infants. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[6]  Alex D. Hwang,et al.  New Contrast Metric for Realistic Display Performance Measure. , 2016, Digest of technical papers. SID International Symposium.

[7]  B. Julesz,et al.  Spatial-frequency masking in vision: critical bands and spread of masking. , 1972, Journal of the Optical Society of America.

[8]  Eli Peli,et al.  Psychophysical contrast calibration , 2013, Vision Research.

[9]  Sophie Triantaphillidou,et al.  Spatial contrast sensitivity and discrimination in pictorial images , 2014, Electronic Imaging.

[10]  David J. Sakrison,et al.  The effects of a visual fidelity criterion of the encoding of images , 1974, IEEE Trans. Inf. Theory.

[11]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[12]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[13]  Damon M. Chandler,et al.  Seven challenges for image quality research , 2014, Electronic Imaging.

[14]  Edward M. Crane An Objective Method for Rating Picture Sharpness: SMT Acutance , 1964 .

[15]  Sheila S. Hemami,et al.  VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images , 2007, IEEE Transactions on Image Processing.

[16]  P. Bex,et al.  Spatial frequency, phase, and the contrast of natural images. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Jon Y. Hardeberg,et al.  A New Spatial Hue Angle Metric for Perceptual Image Difference , 2009, CCIW.

[18]  Peter G. J. Barten,et al.  Evaluation of Subjective Image Quality with the Square Root Integral Method , 1990, Applied Vision.

[19]  A B Watson,et al.  Visual detection of spatial contrast patterns: evaluation of five simple models. , 2000, Optics express.

[20]  A. Watanabe,et al.  Spatial sine-wave responses of the human visual system. , 1968, Vision research.

[21]  Peter G. J. Barten,et al.  Contrast sensitivity of the human eye and its e ects on image quality , 1999 .

[22]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[23]  R. E. Jacobson,et al.  The relationship between objective and subjective image quality criteria , 1993 .

[24]  Sophie Triantaphillidou,et al.  Bridging the Gap Between Imaging Performance and Image Quality Measures , 2018 .

[25]  Kenneth R. Alexander,et al.  Spatial contrast sensitivity in dynamic and static additive luminance noise , 2010, Vision Research.

[26]  Andrew B. Watson,et al.  Models of human image discrimination predict object detection in natural backgrounds , 1995, Electronic Imaging.

[27]  S. Appelle Perception and discrimination as a function of stimulus orientation: the "oblique effect" in man and animals. , 1972, Psychological bulletin.

[28]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[29]  E. Peli Feature detection algorithm based on a visual system model , 2002, Proc. IEEE.

[30]  M. A. Repucci,et al.  Spatial Structure and Symmetry of Simple-Cell Receptive Fields in Macaque Primary Visual Cortex , 2002 .

[31]  Sophie Triantaphillidou,et al.  Introduction to image quality and system performance , 2011 .

[32]  K. Biedermann,et al.  Lens Performance Assessment By Image Quality Criteria , 1985, Other Conferences.

[33]  Jon Y. Hardeberg,et al.  Measuring perceptual contrast in digital images , 2012, J. Vis. Commun. Image Represent..

[34]  Eli Peli,et al.  Complexities of complex contrast , 2012, Electronic Imaging.

[35]  Mark A. Richardson,et al.  Comparison between the effective pictorial information capacities of JPEG 6b and 2000 , 2005, SPIE OPTO-Ireland.

[36]  Scott J. Daly,et al.  Visible differences predictor: an algorithm for the assessment of image fidelity , 1992, Electronic Imaging.

[37]  F. Campbell,et al.  The effect of orientation on the visual resolution of gratings , 1966, The Journal of physiology.

[38]  Eric C. Larson,et al.  Most apparent distortion: full-reference image quality assessment and the role of strategy , 2010, J. Electronic Imaging.

[39]  D. Chandler Seven Challenges in Image Quality Assessment: Past, Present, and Future Research , 2013 .

[40]  Steven C Dakin,et al.  Contrast gain control in natural scenes. , 2007, Journal of vision.

[41]  D. Pelli,et al.  Measuring contrast sensitivity , 2013, Vision Research.

[42]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  A. Beghdadi,et al.  Color Image Assessment Using Spatial Extension to CIE DE2000 , 2008, 2008 Digest of Technical Papers - International Conference on Consumer Electronics.

[44]  Albert J. Ahumada,et al.  Computational image quality metrics: A review , 1993 .

[45]  E. Peli,et al.  Perceived contrast in complex images. , 2012, Journal of vision.

[46]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[47]  Jyrki Rovamo,et al.  Effects of luminance and exposure time on contrast sensitivity in spatial noise , 1993, Vision Research.

[48]  Sophie M. Wuerger,et al.  Estimation of chromatic channel spatial frequency responses , 2010 .

[49]  C Kaernbach,et al.  Simple adaptive testing with the weighted up-down method , 1991, Perception & psychophysics.

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  Albert A. Michelson,et al.  Studies in Optics , 1995 .

[52]  D. H. Kelly Visual Contrast Sensitivity , 1977 .

[53]  Gordon E. Legge,et al.  Comparing the Shape of Contrast Sensitivity Functions for Normal and Low Vision , 2015, Investigative ophthalmology & visual science.

[54]  D. Amnon Silverstein,et al.  The relationship between image fidelity and image quality , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[55]  E. Peli,et al.  Contrast sensitivity function and image discrimination. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[56]  Jack L. Gallant,et al.  Erratum: Neural activity in areas V1 ... (NeuroReport 9:7 (1673-1678)) , 1998 .

[57]  KIM T. BLACKWELL,et al.  PII: S0042-6989(97)00130-2 , 2003 .

[58]  N. Nagaraja,et al.  Effect of Luminance Noise on Contrast Thresholds , 1964 .

[59]  Jan P. Allebach,et al.  Human vision and electronic imaging , 1996, J. Electronic Imaging.

[60]  J Rovamo,et al.  Effect of Location and Orientation Uncertainty on R.M.S. Contrast Sensitivity with and without Spatial Noise in Peripheral and Foveal Vision , 1995, Optometry and vision science : official publication of the American Academy of Optometry.

[61]  E Peli,et al.  Contrast sensitivity to patch stimuli: effects of spatial bandwidth and temporal presentation. , 1993, Spatial vision.

[62]  Mark D. Fairchild,et al.  iCAM framework for image appearance, differences, and quality , 2004, J. Electronic Imaging.

[63]  Jeffrey Lubin,et al.  The use of psychophysical data and models in the analysis of display system performance , 1993 .

[64]  M. Webster,et al.  Contrast adaptation and the spatial structure of natural images. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  Eli Peli,et al.  Is image quality a function of contrast perception? , 2013, Electronic Imaging.

[66]  Wilson S. Geisler,et al.  Image quality assessment based on a degradation model , 2000, IEEE Trans. Image Process..

[67]  Patrick C. Teo,et al.  Perceptual image distortion , 1994, Electronic Imaging.

[68]  Benjamin Tseng,et al.  Towards the Development of the IEEE P1858 CPIQ Standard – A Validation Study , 2017 .

[69]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[70]  D. Tolhurst,et al.  Perception of suprathreshold naturalistic changes in colored natural images. , 2010, Journal of vision.

[71]  O. Schade Optical and photoelectric analog of the eye. , 1956, Journal of the Optical Society of America.

[72]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[73]  Ralph E. Jacobson,et al.  An Evaluation of Image Quality Metrics , 1995 .

[74]  G. Legge,et al.  Contrast discrimination in noise. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[75]  J. Solomon The history of dipper functions , 2009, Attention, perception & psychophysics.

[76]  A. Watson,et al.  A standard model for foveal detection of spatial contrast. , 2005, Journal of vision.

[77]  Michael Dorr,et al.  Rapid and reliable assessment of the contrast sensitivity function on an iPad. , 2013, Investigative ophthalmology & visual science.

[78]  Abhishek Tiwari,et al.  IMAGE COMPRESSION SCHEMES BASED ON BLOCK CLASSIFICATION AND SORTING : A REVIEW , 2017 .

[79]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[80]  A van Meeteren,et al.  Effects of pictorial noise interfering with visual detection. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[81]  E Peli,et al.  Test of a model of foveal vision by using simulations. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[82]  Lindsay W. MacDonald,et al.  Sharpness Enhancement through Spatial Frequency Decomposition , 2001, PICS.

[83]  Jan P. Allebach,et al.  A computational texture masking model for natural images based on adjacent visual channel inhibition , 2014, Electronic Imaging.

[84]  S. Solomon,et al.  Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure. , 2009, Journal of vision.

[85]  Robert A. Frazor,et al.  Local luminance and contrast in natural images , 2006, Vision Research.

[86]  Sophie Triantaphillidou,et al.  Measurements of the Modulation Transfer Function of image displays , 2004 .

[87]  Roy S. Berns,et al.  Colorimetric Characterization of a Computer-Controlled Liquid Crystal Display , 2004 .

[88]  Jyrki Rovamo,et al.  Contrast sensitivity as a function of spatial frequency, viewing distance and eccentricity with and without spatial noise , 1992, Vision Research.

[89]  Valero Laparra,et al.  Divisive normalization image quality metric revisited. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[90]  Peter G. J. Barten,et al.  Physical model for the contrast sensitivity of the human eye , 1992, Electronic Imaging.

[91]  D. W. Watkins,et al.  Grating visibility as a function of orientation and retinal eccentricity , 1975, Vision Research.