A Hybrid SS-SA Approach for Solving Multi-Objective Optimization Problems

Decision makers, nowadays, face complex real world problems having more than one conflicting objective functions to be optimized at the same time. In this paper, we developed a hybrid approach based on scatter search and simulated annealing for solving the multi-objective optimization problems. To validate our approach, we solved some test problems from the literature, compared the results with other approaches, and found that our proposed approach performs well.

[1]  Fulya Altiparmak,et al.  Multi-objective optimization of a stochastic assembly line balancing: A hybrid simulated annealing algorithm , 2011, Comput. Ind. Eng..

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Rafael Caballero,et al.  SSPMO: A Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization , 2007, INFORMS J. Comput..

[4]  Sebastián Lozano,et al.  An empirical investigation on parallelization strategies for Scatter Search , 2006, Eur. J. Oper. Res..

[5]  Reza Tavakkoli-Moghaddam,et al.  A multi-objective scatter search for a mixed-model assembly line sequencing problem , 2007, Adv. Eng. Informatics.

[6]  Masoud Rabbani,et al.  A multi-objective scatter search for a dynamic cell formation problem , 2009, Comput. Oper. Res..

[7]  José Rui Figueira,et al.  A scatter search method for bi-criteria {0, 1}-knapsack problems , 2006, Eur. J. Oper. Res..

[8]  Jun Zhang,et al.  A scatter search algorithm for solving vehicle routing problem with loading cost , 2010, Expert Syst. Appl..

[9]  Tugrul Talaslioglu Multi-Objective Design Optimization of Grillage Systems by Scatter Search Methodology , 2010 .

[10]  Ricardo P. Beausoleil,et al.  "MOSS" multiobjective scatter search applied to non-linear multiple criteria optimization , 2006, Eur. J. Oper. Res..

[11]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[12]  Fatos Xhafa,et al.  A simulated annealing algorithm for router nodes placement problem in Wireless Mesh Networks , 2011, Simul. Model. Pract. Theory.

[13]  R. Tavakkoli-Moghaddam,et al.  A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem , 2008 .

[14]  W. Art Chaovalitwongse,et al.  Scatter search for the stochastic travel-time vehicle routing problem with simultaneous pick-ups and deliveries , 2012, Comput. Oper. Res..

[15]  Mark Sumner,et al.  A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[17]  Analía Amandi,et al.  Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem , 2013, Expert Syst. Appl..

[18]  Dun-Wei Gong,et al.  Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems , 2013, Inf. Sci..

[19]  Ramazan Sahin A simulated annealing algorithm for solving the bi-objective facility layout problem , 2011, Expert Syst. Appl..

[20]  Glaydston Mattos Ribeiro,et al.  A simple and robust Simulated Annealing algorithm for scheduling workover rigs on onshore oil fields , 2011, Comput. Ind. Eng..

[21]  Xin-She Yang,et al.  Multi-Objective Flower Algorithm for Optimization , 2014, ICCS.

[22]  Fang Wu,et al.  A simulated annealing for multi-criteria optimization problem: DBMOSA , 2014, Swarm Evol. Comput..

[23]  Reza Tavakkoli-Moghaddam,et al.  A new mathematical model for a competitive vehicle routing problem with time windows solved by simulated annealing , 2011 .

[24]  A. Kaveh,et al.  A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization , 2011, Expert Syst. Appl..

[25]  Parag C. Pendharkar Scatter search based interactive multi-criteria optimization of fuzzy objectives for coal production planning , 2013, Eng. Appl. Artif. Intell..

[26]  Seyed Taghi Akhavan Niaki,et al.  A hybrid variable neighborhood search and simulated annealing algorithm to estimate the three parameters of the Weibull distribution , 2011, Expert Syst. Appl..

[27]  M. A. El-Shorbagy,et al.  Local search based hybrid particle swarm optimization algorithm for multiobjective optimization , 2012, Swarm Evol. Comput..

[28]  Francisco Herrera,et al.  Continuous scatter search: An analysis of the integration of some combination methods and improvement strategies , 2006, Eur. J. Oper. Res..

[29]  Julio Ortega Lopera,et al.  A Simulated Annealing-based parallel multi-objective approach to vehicle routing problems with time windows , 2013, Expert Syst. Appl..

[30]  Asif Ekbal,et al.  A multiobjective simulated annealing approach for classifier ensemble: Named entity recognition in Indian languages as case studies , 2011, Expert Syst. Appl..

[31]  Shiyou Yang,et al.  A simulated annealing algorithm for multiobjective optimizations of electromagnetic devices , 2003 .

[32]  Fang Liu,et al.  A co-evolutionary multi-objective optimization algorithm based on direction vectors , 2013, Inf. Sci..

[33]  R. Tavakkoli-Moghaddam,et al.  A new integrated mathematical model for a bi-objective multi-depot location-routing problem solved by a multi-objective scatter search algorithm , 2010 .

[34]  Fred W. Glover,et al.  Principles of scatter search , 2006, Eur. J. Oper. Res..

[35]  Francisco Gortázar,et al.  Black box scatter search for general classes of binary optimization problems , 2010, Comput. Oper. Res..

[36]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[37]  Viviana Cocco Mariani,et al.  Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem , 2013 .

[38]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[39]  Shih-Wei Lin,et al.  Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm , 2013, Comput. Oper. Res..

[40]  Dominik Zelazny,et al.  Optimizing Bicriteria Flow Shop Scheduling Problem By Simulated Annealing Algorithm , 2013, ICCS.

[41]  Oscar Cordón,et al.  An advanced scatter search design for skull-face overlay in craniofacial superimposition , 2012, Expert Syst. Appl..

[42]  Abdul Hanan Abdullah,et al.  MOICA: A novel multi-objective approach based on imperialist competitive algorithm , 2013, Appl. Math. Comput..

[43]  Bin Wang,et al.  Multi-objective optimization using teaching-learning-based optimization algorithm , 2013, Eng. Appl. Artif. Intell..

[44]  Rafael Martí,et al.  Scatter Search - Wellsprings and Challenges , 2006, Eur. J. Oper. Res..

[45]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[46]  Xiang Li,et al.  BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems , 2013, Comput. Oper. Res..

[47]  Fariborz Jolai,et al.  Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem , 2013 .