ANNEALING TECHNIQUES APPLIED TO RESERVOIR MODELING AND THE INTEGRATION OF GEOLOGICAL AND ENGINEERING (WELL TEST) DATA

Stochastic reservoir models must honor as much input data as possible to be reliable numerical models of the reservoir under study. Traditional simulation algorithms are unable to honor either complex geological/morphological patterns or engineering data from well tests. The technique developed in this dissertation may be used to incorporate such information into stochastic reservoir models. This dissertation develops the application of the optimization methods known as simulated annealing, to stochastic simulation. The essential feature of the method is the formulation of stochastic imaging as an optimization problem with some specified objective function. The additional information to be matched by the stochastic images is built into the objective function. Complex geological patterns and effective properties inferred from well tests may be incorporated into stochastic reservoir models with relatively modest computational effort. Complex geological patterns or spatial features require multivariate spatial statistics (n > 2) in addition to conventional bivariate (n = 2) statistics. By considering selected multivariate spatial statistics it is possible to impose such geological patterns on stochastic images. The effective permeability inferred from a well test constrains the possible spatial distribution of elementary grid block permeability values near the well bore. Once again, it is possible to impose this well test information through an understanding and heuristic quantification of the averaging process near the well bore.

[1]  E. Jaynes Entropy and Search Theory , 1985 .

[2]  Clement Kostov,et al.  An interpolation method taking into account inequality constraints: I. Methodology , 1986 .

[3]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[4]  A. Maréchal Kriging Seismic Data in Presence of Faults , 1984 .

[5]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[6]  J. Doob Stochastic processes , 1953 .

[7]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[8]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[9]  David Green,et al.  Statistical inference for spatial processes , 1990 .

[10]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[11]  H. Haldorsen,et al.  Stochastic Modeling (includes associated papers 21255 and 21299 ) , 1990 .

[12]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[13]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[14]  Andre G. Journel,et al.  New method for reservoir mapping , 1990 .

[15]  R. Giordano,et al.  The Effects of Permeability Variations on Flow in Porous Media , 1985 .

[16]  K. Weber,et al.  Influence of common sedimentary structures on fluid flow in reservoir models , 1982 .

[17]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[18]  Mike R. Leeder,et al.  A simulation model of alluvial stratigraphy , 1979 .

[19]  S. F. Gull,et al.  The Entropy of an Image , 1985 .

[20]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[21]  John W. Harbaugh,et al.  Simulating Clastic Sedimentation , 1989 .

[22]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[23]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[24]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[25]  R. Horne Modern Well Test Analysis: A Computer-Aided Approach , 1990 .

[26]  David Michel,et al.  Geostatistical Ore Reserve Estimation , 1977 .

[27]  Edwin Dinwiddie McKee,et al.  A study of global sand seas , 1979 .

[28]  A. Journel Fundamentals of geostatistics in five lessons , 1991 .

[29]  I. Gibson Statistics and Data Analysis in Geology , 1976, Mineralogical Magazine.

[30]  Thomas A. Hewett,et al.  Considerations affecting the scaling of displacements in heterogeneous permeability distributions , 1993 .

[31]  Andre G. Journel Recoverable reserves estimation ― the geostatistical approach , 1985 .

[32]  R. A. Behrens,et al.  SCALING LAWS IN RESERVOIR SIMULATION AND THEIR USE IN A HYBRID FINITE DIFFERENCE/STREAMTUBE APPROACH TO SIMULATING THE EFFECTS OF PERMEABILITY HETEROGENEITY , 1991 .

[33]  Andre G. Journel,et al.  Constrained interpolation and qualitative information—The soft kriging approach , 1986 .

[34]  William H. Press,et al.  Numerical recipes , 1990 .

[35]  A. Journel Geostatistics for Conditional Simulation of Ore Bodies , 1974 .

[36]  D. S. Jones,et al.  Elementary information theory , 1979 .

[37]  Leslie A. Morrissey,et al.  Methane emissions from Alaska Arctic tundra: An assessment of local spatial variability , 1992 .

[38]  N.Ya. Vilenkin,et al.  Generalized Random Processes , 1964 .

[39]  S. Bachu,et al.  CHARACTERIZING SHALE CLAST HETEROGENEITIES AND THEIR EFFECT ON FLUID FLOW , 1991 .

[40]  Andre G. Journel,et al.  Mixture of populations , 1991 .

[41]  S. Begg,et al.  Assigning Effective Values to Simulator Gridblock Parameters for Heterogeneous Reservoirs , 1989 .

[42]  Clayton V. Deutsch,et al.  The Application of Simulated Annealing to Stochastic Reservoir Modeling , 1994 .

[43]  Dean S. Oliver,et al.  The Averaging Process in Permeability Estimation From Well-Test Data , 1990 .

[44]  D. Bounds New optimization methods from physics and biology , 1987, Nature.

[45]  Donato Posa,et al.  Characteristic behavior and order relations for indicator variograms , 1990 .

[46]  A. G. Journel,et al.  Indicator principal component kriging , 1991 .

[47]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[48]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[49]  J. Jaime Gómez-Hernández,et al.  ISIM3D: and ANSI-C three-dimensional multiple indicator conditional simulation program , 1990 .

[50]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[51]  Henning Omre,et al.  Calcite Cementation: Description and Production Consequences , 1990 .

[52]  Clayton V. Deutsch,et al.  Calculating effective absolute permeability in sandstone/shale sequences , 1989 .

[53]  Thomas A. Hewett,et al.  Conditional Simulation of Reservoir Heterogeneity With Fractals , 1990 .

[54]  S. Bachu,et al.  A Multidisciplinary Approach To Reservoir Characterization: The Provost Upper Mannville B Pool , 1989 .

[55]  L N Frazer,et al.  Rapid Determination of the Critical Temperature in Simulated Annealing Inversion , 1990, Science.

[56]  W. Irwin "Where do we go from here?". , 1951, Radiography.

[57]  Michael Edward Hohn,et al.  Geostatistics and Petroleum Geology , 1988 .

[58]  J. Skilling,et al.  Algorithms and Applications , 1985 .

[59]  E. Bowen To the North , 1933 .

[60]  G. Korvin Axiomatic characterization of the general mixture rule , 1982 .

[61]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[62]  B. Davis,et al.  INDICATOR KRIGING AS APPLIED TO AN ALLUVIAL GOLD DEPOSIT , 1984 .

[63]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[64]  Amilcar Soares,et al.  Geostatistical estimation of orebody geometry: Morphological kriging , 1990 .

[65]  A. Goldberger Best Linear Unbiased Prediction in the Generalized Linear Regression Model , 1962 .

[66]  C. S. Matthews,et al.  Pressure Buildup and Flow Tests in Wells , 1967 .

[67]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[68]  T. Hewett Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport , 1986 .

[69]  B. Ripley Statistical inference for spatial processes , 1990 .

[70]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[71]  Dean S. Oliver Estimation of radial permeability distribution from well-test data , 1992 .

[72]  M. Dagbert,et al.  Computing Variograms in Folded Strata-Controlled Deposits , 1984 .

[73]  F. G. Alabert Constraining Description of Randomly Heterogeneous Reservoirs to Pressure Test Data: A Monte Carlo Study , 1989 .

[74]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[75]  Francois Alabert,et al.  The practice of fast conditional simulations through the LU decomposition of the covariance matrix , 1987 .

[76]  J. Finjord Discussion of the relationship between radius of drainage and cumulative production , 1988 .

[77]  Adobe Press,et al.  Postscript language - tutorial and cookbook , 1986 .

[78]  Andre G. Journel,et al.  mAD and Conditional Quantile Estimators , 1984 .

[79]  K. Aziz,et al.  Prediction Of Uncertainty In Reservoir Performance Forecast , 1992 .

[80]  Daniel H. Rothman,et al.  Nonlinear inversion, statistical mechanics, and residual statics estimation , 1985 .

[81]  H. J. Ramey,et al.  Advances in Practical Well-Test Analysis , 1992 .

[82]  Clayton V. Deutsch,et al.  DECLUS: a FORTRAN 77 program for determining optimum spatial declustering weights , 1989 .

[83]  F. G. Alabert,et al.  Heterogeneity in a Complex Turbiditic Reservoir: Stochastic Modelling of Facies and Petrophysical Variability , 1990 .

[84]  Editors , 1986, Brain Research Bulletin.

[85]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[86]  A. Journel Nonparametric estimation of spatial distributions , 1983 .

[87]  Clayton V. Deutsch,et al.  Power Averaging for Block Effective Permeability , 1986 .

[88]  Erick F. Weiland Contouring geological surfaces with the computer , 1987 .

[89]  Dominique Guerillot,et al.  An integrated model for computer aided reservoir description : from outcrop study to fluid flow simulations , 1990 .

[90]  T P Martin,et al.  Entropy in Relation to Incomplete Knowledge , 1986 .

[91]  E. Isaaks,et al.  Indicator Simulation: Application to the Simulation of a High Grade Uranium Mineralization , 1984 .

[92]  P. M. Doyen,et al.  Seismic Discrimination of Lithology In Sand/Shale Reservoirs: A Bayesian Approach , 1989 .

[93]  K. Weber,et al.  HOW HETEROGENEITY AFFECTS OIL RECOVERY , 1986 .

[94]  G. Christakos A Bayesian/maximum-entropy view to the spatial estimation problem , 1990 .

[95]  Andre G. Journel,et al.  The Place of Non-Parametric Geostatistics , 1984 .

[96]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[97]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[98]  Alain Marechal,et al.  Recovery Estimation: A Review of Models and Methods , 1984 .

[99]  Andre G. Journel,et al.  Geostatistics: Models and tools for the earth sciences , 1986 .

[100]  Philippe Marie Doyen,et al.  Porosity from seismic data: A geostatistical approach , 1988 .

[101]  J. Jaimegomezhernandez,et al.  ISIM3D: An ANSI-C three-dimensional multiple indicator conditional simulation program , 1990 .

[102]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[103]  A. Journel,et al.  Entropy and spatial disorder , 1993 .

[104]  F. Alabert,et al.  Non-Gaussian data expansion in the Earth Sciences , 1989 .

[105]  Andre G. Journel,et al.  Stochastic imaging of the Wilmington clastic sequence , 1990 .