Flavor and Collider Signatures of Asymmetric Dark Matter

We consider flavor constraints on, and collider signatures of, asymmetric dark matter (ADM) via higher dimension operators. In the supersymmetric models we consider, $R$-parity-violating (RPV) operators carrying $B\ensuremath{-}L$ interact with $n$ dark matter particles $X$ through an interaction of the form $W={X}^{n}{\mathcal{O}}_{B\ensuremath{-}L}$, where ${\mathcal{O}}_{B\ensuremath{-}L}=q\ensuremath{\ell}{d}^{c}$, ${u}^{c}{d}^{c}{d}^{c}$, $\ensuremath{\ell}\ensuremath{\ell}{e}^{c}$. This interaction ensures that the lightest ordinary supersymmetric particle is unstable to decay into the $X$ sector, leading to a higher multiplicity of final state particles and reduced missing energy at a collider. Flavor-violating processes place constraints on the scale of the higher dimension operator, impacting whether the LOSP decays promptly. While the strongest limitations on RPV from $n\ensuremath{-}\overline{n}$ oscillations and proton decay do not apply to ADM, we analyze the constraints from meson mixing, $\ensuremath{\mu}\ensuremath{-}e$ conversion, $\ensuremath{\mu}\ensuremath{\rightarrow}3e$ and $b\ensuremath{\rightarrow}s{\ensuremath{\ell}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}$. We show that these flavor constraints, even in the absence of flavor symmetries, allow parameter space for prompt decay to the $X$ sector, with additional jets and leptons in exotic flavor combinations. We study the constraints from existing 8 TeV LHC Supersymmetry (SUSY) searches with (i) 2--6 jets plus missing energy and (ii) 1--2 leptons, 3--6 jets plus missing energy, comparing the constraints on ADM-extended supersymmetry with the usual supersymmetric simplified models.

[1]  E. Farhi,et al.  Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe , 1990 .

[2]  David E. Kaplan,et al.  Asymmetric Dark Matter , 2009, 0901.4117.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  T. Slatyer,et al.  A collective breaking of R-parity , 2012, 1207.5787.

[5]  K. Sigurdson,et al.  Unified origin for baryonic visible matter and antibaryonic dark matter. , 2010, Physical review letters.

[6]  K. Zurek,et al.  Tevatron top A FB versus LHC top physics , 2011, 1107.4364.

[7]  A. Soni,et al.  Flavored dark matter in direct detection experiments and at the LHC , 2011, 1104.5239.

[8]  P. Meade,et al.  BRIDGE: Branching ratio inquiry / decay generated events , 2007, hep-ph/0703031.

[9]  J. T. Childers,et al.  Search for the decay Bs0→μ+μ- with the ATLAS detector , 2012 .

[10]  P. Eerola,et al.  Search for B0s → μ+μ− and B0 → μ+μ− decays , 2012 .

[11]  Search for New Physics in the Multijets and Missing Momentum Final State in Proton-Proton Collisions at 8 TeV , 2013 .

[12]  L. A. Granado Cardoso,et al.  Strong constraints on the rare decays B(s)(0) → μ+ μ- and B0 → μ+ μ-. , 2012, Physical review letters.

[13]  P. Catastini,et al.  Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at $ \sqrt{s}=8 $ TeV proton-proton collisions using the ATLAS experiment , 2013 .

[14]  K. Zurek Asymmetric Dark Matter: Theories, Signatures, and Constraints , 2013, 1308.0338.

[15]  T. Hansl-Kozanecka,et al.  Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays , 2010, 1006.4384.

[16]  L. A. Granado Cardoso,et al.  First evidence for the decay B(s)(0)→μ+ μ-. , 2012, Physical review letters.

[17]  → D−π,et al.  The LHCb Collaboration , 2011 .

[18]  K. Sigurdson,et al.  Baryon destruction by asymmetric dark matter , 2011, 1106.4320.

[19]  S. Blanchet,et al.  Flavored Dark Matter, and Its Implications for Direct Detection and Colliders , 2011, 1109.3516.

[20]  M. Strassler Possible Effects of a Hidden Valley on Supersymmetric Phenomenology , 2006, hep-ph/0607160.

[21]  Y. Nir,et al.  Flavor Physics Constraints for Physics Beyond the Standard Model , 2010, 1002.0900.

[22]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[23]  T. Javůrek Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb−1 of s=8 TeV proton–proton collision data , 2016 .

[24]  M. Kreps,et al.  First Evidence for the Decay B , 2013 .

[25]  JiJi Fan,et al.  Stealth supersymmetry , 2011, 1105.5135.

[26]  L. Hall,et al.  What is the cosmion , 1987 .

[27]  Spencer Chang,et al.  Displaced Dark Matter at Colliders , 2009, 0906.5013.

[28]  S. Nussinov Technocosmology — could a technibaryon excess provide a “natural” missing mass candidate? , 1985 .

[29]  M. Strassler,et al.  Echoes of a hidden valley at hadron colliders , 2006, hep-ph/0604261.

[30]  Atlas Collaboration,et al.  Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at $\sqrt{s}=8$ TeV with the ATLAS detector , 2015, 1501.03555.

[31]  P. Catastini,et al.  Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2015 .

[32]  J. Hofmann,et al.  Test of lepton-flavour conservation in μ → e conversion on titanium☆ , 1993 .

[33]  P. Bartalini,et al.  A standard format for Les Houches Event Files , 2007, Comput. Phys. Commun..

[34]  J. Wacker,et al.  Where the sidewalk ends: jets and missing energy search strategies for the 7 TeV LHC , 2011, 1102.5338.

[35]  F. Zwirner Observable ΔB = 2 transitions without nucleon decay in a minimal supersymmetric extension of the standard model , 1983 .

[36]  D. Hooper,et al.  Natural supersymmetric model with MeV dark matter , 2008, 0801.3686.

[37]  JiJi Fan,et al.  A stealth supersymmetry sampler , 2012, 1201.4875.

[38]  I. Zychor,et al.  A search for μ-e conversion in muonic gold , 2006 .

[39]  David E. Kaplan,et al.  Displaced Supersymmetry , 2012, 1204.6038.

[40]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[41]  J. T. Childers,et al.  Further search for supersymmetry at √s=7TeV in final states with jets, missing transverse momentum, and isolated leptons with the ATLAS detector , 2012 .

[42]  Y. Grossman,et al.  MFV SUSY: A Natural Theory for R-Parity Violation , 2011, 1111.1239.

[43]  Y. Okada,et al.  Detailed calculation of lepton flavor violating muon-electron conversion rate for various nuclei , 2002, hep-ph/0203110.

[44]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[45]  J. Kile Flavored Dark Matter: A Review , 2013, 1308.0584.

[46]  Dark Matter from new Technicolor Theories , 2006, hep-ph/0608055.

[47]  W. Altmannshofer,et al.  Cornering new physics in b → s transitions , 2012, 1206.0273.

[48]  J. Zupan,et al.  Discovering Dark Matter Through Flavor Violation at the LHC , 2011, 1107.0623.

[49]  Michael Spira,et al.  PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD , 1996 .

[50]  S. Tulin,et al.  Top-flavored dark matter and the forward-backward asymmetry , 2013, 1303.0332.

[51]  P. Schuster,et al.  Simplified models for a first characterization of new physics at the LHC , 2008, 0810.3921.