Diverse heterochromatin states restricting cell identity and reprogramming.

[1]  R. J. Barnett,et al.  3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome , 2022, Cell.

[2]  L. Hurst,et al.  Dynamic reprogramming of H3K9me3 at hominoid-specific retrotransposons during human preimplantation development. , 2022, Cell stem cell.

[3]  S. Gasser,et al.  Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance , 2022, Nature Reviews Molecular Cell Biology.

[4]  M. Poirier,et al.  H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes , 2022, Biochemistry.

[5]  Junwen Wang,et al.  Rolling back human pluripotent stem cells to an eight-cell embryo-like stage , 2022, Nature.

[6]  J. Drouin,et al.  Pioneer factors as master regulators of the epigenome and cell fate , 2022, Nature Reviews Molecular Cell Biology.

[7]  A. Sandelin,et al.  Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression , 2022, Molecular cell.

[8]  G. Papadopoulos,et al.  SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers , 2022, Molecular cell.

[9]  Zachary D. Smith,et al.  Hijacking of transcriptional condensates by endogenous retroviruses , 2021, Nature Genetics.

[10]  A. Kornblihtt,et al.  Seeking the truth behind the myth: Argonaute tales from "nuclearland". , 2021, Molecular cell.

[11]  Jing Liu,et al.  MAP2K6 remodels chromatin and facilitates reprogramming by activating Gatad2b-phosphorylation dependent heterochromatin loosening , 2021, Cell Death & Differentiation.

[12]  S. Bloor,et al.  Genome surveillance by HUSH-mediated silencing of intronless mobile elements , 2021, Nature.

[13]  A. van Oudenaarden,et al.  H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity , 2021, Nature Cell Biology.

[14]  E. Eichler,et al.  A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. , 2021, Cell stem cell.

[15]  A. Hattersley,et al.  Primate-specific ZNF808 is essential for pancreatic development in humans , 2021, medRxiv.

[16]  R. McCarthy,et al.  Diverse Heterochromatin-Associated Proteins Repress Distinct Classes of Genes and Repetitive Elements , 2021, Nature Cell Biology.

[17]  Galina A. Erikson,et al.  Complete loss of H3K9 methylation dissolves mouse heterochromatin organization , 2021, Nature Communications.

[18]  B. Ozkan,et al.  Dissecting OCT4 defines the role of nucleosome binding in pluripotency , 2021, Nature Cell Biology.

[19]  K. Helin,et al.  MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells , 2021, Nature Communications.

[20]  Sara A. Grimm,et al.  DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation , 2021, Nature Communications.

[21]  M. Lorincz,et al.  Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing , 2021, Nature Communications.

[22]  Yi Zhang,et al.  Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos , 2021, Nature Genetics.

[23]  Siyuan Lin,et al.  The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity , 2021, Nature.

[24]  I. Izeddin,et al.  Epigenetic rewriting at centromeric DNA repeats leads to increased chromatin accessibility and chromosomal instability , 2021, bioRxiv.

[25]  T. Leeb,et al.  SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells , 2021, The Journal of cell biology.

[26]  Aurélie Teissandier,et al.  m6A RNA methylation regulates the fate of endogenous retroviruses , 2020, bioRxiv.

[27]  D. Trono,et al.  Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain , 2020, bioRxiv.

[28]  C. Feschotte,et al.  A Field Guide to Eukaryotic Transposable Elements. , 2020, Annual review of genetics.

[29]  Sara A. Grimm,et al.  Interaction of the pioneer transcription factor GATA3 with nucleosomes , 2020, Nature Communications.

[30]  Laura A. Banaszynski,et al.  The roles of histone variants in fine-tuning chromatin organization and function , 2020, Nature Reviews Molecular Cell Biology.

[31]  Juan M. Vaquerizas,et al.  Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3 , 2020, Nature Cell Biology.

[32]  J. Lerner,et al.  Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. , 2020, Molecular cell.

[33]  Y. Dou,et al.  H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction , 2020, Proceedings of the National Academy of Sciences.

[34]  C. Dienemann,et al.  Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function , 2020, Nature.

[35]  D. Bartel,et al.  MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. , 2020, Molecular cell.

[36]  Robert C. Blanshard,et al.  KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes , 2020, Nature Cell Biology.

[37]  Annika L. Gable,et al.  ChromID identifies the protein interactome at chromatin marks , 2020, Nature Biotechnology.

[38]  Chuan He,et al.  N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription , 2020, Science.

[39]  F. Zhang,et al.  The Nuclear Matrix Protein SAFB Cooperates with Major Satellite RNAs to Stabilize Heterochromatin Architecture Partially through Phase Separation. , 2020, Molecular cell.

[40]  H. Schöler,et al.  Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming , 2020, The EMBO journal.

[41]  Melissa M. Harrison,et al.  Structural Features of Transcription Factors Associating with Nucleosome Binding. , 2019, Molecular cell.

[42]  D. Pasini,et al.  Histone H2AK119 Mono-Ubiquitination Is Essential for Polycomb-Mediated Transcriptional Repression , 2019, bioRxiv.

[43]  P. Sivaramakrishnan,et al.  H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis , 2019, bioRxiv.

[44]  R. Jaenisch,et al.  Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs , 2019, Cell stem cell.

[45]  J. Epstein,et al.  Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9me2 domains , 2019, Development.

[46]  M. Zhang,et al.  H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[47]  B. Garcia,et al.  H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification , 2019, Science.

[48]  S. Grewal,et al.  A conserved dimer interface connects ERH and YTH family proteins to promote gene silencing , 2019, Nature Communications.

[49]  Marc Graille,et al.  m6A mRNA Destiny: Chained to the rhYTHm by the YTH-Containing Proteins , 2019, Genes.

[50]  D. Reinberg,et al.  Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation During DNA Replication , 2019, SSRN Electronic Journal.

[51]  G. Karpen,et al.  Heterochromatin: Guardian of the Genome. , 2018, Annual review of cell and developmental biology.

[52]  L. Gan,et al.  The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin , 2018, bioRxiv.

[53]  M. Torres-Padilla,et al.  Nimble and Ready to Mingle: Transposon Outbursts of Early Development. , 2018, Trends in genetics : TIG.

[54]  J. Ecker,et al.  Dynamic DNA methylation: In the right place at the right time , 2018, Science.

[55]  Jason D. Buenrostro,et al.  Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. , 2018, Cell stem cell.

[56]  Xiaohua Shen,et al.  A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity , 2018, Cell.

[57]  Itamar Lev,et al.  H3K9me3 is required for inheritance of small RNAs that target a unique subset of newly evolved genes , 2018, bioRxiv.

[58]  Helen M. Rowe,et al.  The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes , 2018, Genome research.

[59]  Chenfei Wang,et al.  Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development , 2018, Nature Cell Biology.

[60]  S. Sekine,et al.  Structural Basis of Heterochromatin Formation by Human HP1. , 2018, Molecular cell.

[61]  Hong Wang,et al.  Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naïve state , 2018, eLife.

[62]  Sebastian Amigorena,et al.  The epigenetic control of stemness in CD8+ T cell fate commitment , 2018, Science.

[63]  David R. Kelley,et al.  Genetic determinants and epigenetic effects of pioneer factor occupancy , 2018, Nature Genetics.

[64]  T. Pastinen,et al.  Pioneer factor Pax7 deploys a stable enhancer repertoire for specification of cell fate , 2018, Nature Genetics.

[65]  P. Cramer,et al.  The interaction landscape between transcription factors and the nucleosome , 2017, Nature.

[66]  B. Garcia,et al.  Genomic and Proteomic Resolution of Heterochromatin and Its Restriction of Alternate Fate Genes. , 2017, Molecular cell.

[67]  J. Epstein,et al.  Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction , 2017, Cell.

[68]  R. Schneider,et al.  Dynamic changes in H1 subtype composition during epigenetic reprogramming , 2017, The Journal of cell biology.

[69]  O. Rando,et al.  LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo , 2017, Nature Genetics.

[70]  G. Laible,et al.  KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency , 2017, Scientific Reports.

[71]  D. Trono,et al.  KRAB zinc finger proteins , 2017, Development.

[72]  I. Mylonis,et al.  Enhancer of rudimentary homologue interacts with scaffold attachment factor B at the nuclear matrix to regulate SR protein phosphorylation , 2017, The FEBS journal.

[73]  Shannon M. McNulty,et al.  RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin , 2017, eLife.

[74]  T. Jenuwein,et al.  Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation , 2017, eLife.

[75]  Sébastien Phan,et al.  ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells , 2017, Science.

[76]  Bas van Steensel,et al.  Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression , 2017, Cell.

[77]  B. Calabretta,et al.  Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation. , 2017, Molecular cell.

[78]  D. Trono,et al.  KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks , 2017, Nature.

[79]  R. Beijersbergen,et al.  TRIM28 Is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming , 2017, Stem cells.

[80]  M. Hattori,et al.  A Histone Methyltransferase ESET Is Critical for T Cell Development , 2016, The Journal of Immunology.

[81]  Yong Zhang,et al.  Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos , 2016, Nature.

[82]  K. Kaestner,et al.  The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. , 2016, Molecular cell.

[83]  D. Steinemann,et al.  The stem cell zinc finger 1 (SZF1)/ZNF589 protein has a human-specific evolutionary nucleotide DNA change and acts as a regulator of cell viability in the hematopoietic system. , 2016, Experimental hematology.

[84]  Helen M. Rowe,et al.  Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. , 2016, Developmental cell.

[85]  T. Sugiyama,et al.  Enhancer of Rudimentary Cooperates with Conserved RNA-Processing Factors to Promote Meiotic mRNA Decay and Facultative Heterochromatin Assembly. , 2016, Molecular cell.

[86]  Howard Y. Chang,et al.  The histone chaperone CAF-1 safeguards somatic cell identity , 2015, Nature.

[87]  Jeannie T. Lee,et al.  Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. , 2015, Science.

[88]  M. Blasco,et al.  Epigenetic silencing of Oct4 by a complex containing SUV39H1 and Oct4 pseudogene lncRNA , 2015, Nature Communications.

[89]  M. Pellegrini,et al.  Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming , 2015, Cell.

[90]  D. Moazed,et al.  Epigenetic inheritance uncoupled from sequence-specific recruitment , 2015, Science.

[91]  Shogo Matoba,et al.  Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation , 2014, Cell.

[92]  Adam Burton,et al.  Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis , 2014, Nature Reviews Molecular Cell Biology.

[93]  Samantha A. Morris,et al.  CellNet: Network Biology Applied to Stem Cell Engineering , 2014, Cell.

[94]  David Haussler,et al.  An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons , 2014, Nature.

[95]  Ying Zhang,et al.  Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. , 2014, Cell stem cell.

[96]  B. Garcia,et al.  Proteomic and genomic approaches reveal critical functions of H3K9 methylation and Heterochromatin Protein-1γ in reprogramming to pluripotency , 2013, Nature Cell Biology.

[97]  Piero Carninci,et al.  Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA , 2013, Nature Structural &Molecular Biology.

[98]  Jieying Zhu,et al.  H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs , 2012, Nature Genetics.

[99]  Greg Donahue,et al.  Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome , 2012, Cell.

[100]  H. A. Schreiber,et al.  An epigenetic silencing pathway controlling T helper 2 cell lineage commitment , 2012, Nature.

[101]  Eric S. Lander,et al.  Chromatin modifying enzymes as modulators of reprogramming , 2012, Nature.

[102]  I. Wilmut,et al.  Histone H4K20me3 and HP1α are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells , 2011, Journal of Cell Science.

[103]  A. Probst,et al.  A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. , 2010, Developmental cell.

[104]  V. Vedantham,et al.  Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors , 2010, Cell.

[105]  Thomas Vierbuchen,et al.  Direct conversion of fibroblasts to functional neurons by defined factors , 2010, Nature.

[106]  Helen M. Rowe,et al.  KAP1 controls endogenous retroviruses in embryonic stem cells , 2010, Nature.

[107]  M. Lappe,et al.  H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming , 2009, Nature Structural &Molecular Biology.

[108]  S. Goff,et al.  Embryonic stem cells use ZFP809 to silence retroviral DNAs , 2009, Nature.

[109]  S. Orkin,et al.  PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos , 2008, Nature Genetics.

[110]  W. Reik,et al.  Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote , 2007, Chromosoma.

[111]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[112]  G. Lyons,et al.  The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. , 2004, Genes & development.

[113]  T. Graf,et al.  Stepwise Reprogramming of B Cells into Macrophages , 2004, Cell.

[114]  R. Meehan,et al.  HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain , 2003, The EMBO journal.

[115]  W. Reik,et al.  Epigenetic Reprogramming in Mammalian Development , 2001, Science.

[116]  H. Weintraub,et al.  Expression of a single transfected cDNA converts fibroblasts to myoblasts , 1987, Cell.

[117]  J. Gurdon,et al.  The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. , 1962, Journal of embryology and experimental morphology.