NDUFS4 deletion triggers loss of NDUFA12 in Ndufs4-/- mice and Leigh syndrome patients: A stabilizing role for NDUFAF2.

[1]  L. E. Formosa,et al.  The Mitochondrial Acyl-carrier Protein Interaction Network Highlights Important Roles for LYRM Family Members in Complex I and Mitoribosome Assembly. , 2020, Molecular & cellular proteomics : MCP.

[2]  Vivek Sharma,et al.  High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly, and disease , 2019, Science Advances.

[3]  H. Riezman,et al.  Understanding the diversity of membrane lipid composition , 2018, Nature Reviews Molecular Cell Biology.

[4]  J. Rutter,et al.  Lipid-mediated signals that regulate mitochondrial biology , 2018, The Journal of Biological Chemistry.

[5]  J. A. Letts,et al.  Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain , 2017, Nature Structural &Molecular Biology.

[6]  A. Heerschap,et al.  Therapeutic effects of the mitochondrial ROS-redox modulator KH176 in a mammalian model of Leigh Disease , 2017, Scientific Reports.

[7]  Maojun Yang,et al.  Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2 , 2017, Cell.

[8]  J. Hirst,et al.  The Enigma of the Respiratory Chain Supercomplex. , 2017, Cell metabolism.

[9]  M. Huynen,et al.  Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3. , 2017, Biochimica et biophysica acta. Bioenergetics.

[10]  J. Hirst,et al.  Subunit NDUFV3 is present in two distinct isoforms in mammalian complex I , 2017, Biochimica et biophysica acta. Bioenergetics.

[11]  I. Wittig,et al.  Accessory subunit NUYM (NDUFS4) is required for stability of the electron input module and activity of mitochondrial complex I. , 2017, Biochimica et biophysica acta. Bioenergetics.

[12]  Ulrich Brandt,et al.  The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. , 2017, Cell metabolism.

[13]  M. Ryan,et al.  A novel isoform of the human mitochondrial complex I subunit NDUFV3 , 2017, FEBS letters.

[14]  Maojun Yang,et al.  Structure of Mammalian Respiratory Supercomplex I1III2IV1 , 2016, Cell.

[15]  G. Degliesposti,et al.  Atomic structure of the entire mammalian mitochondrial complex I , 2016, Nature.

[16]  Ann E. Frazier,et al.  Accessory subunits are integral for assembly and function of human mitochondrial complex I , 2016, Nature.

[17]  Jianlin Lei,et al.  The architecture of the mammalian respirasome , 2016, Nature.

[18]  J. A. Letts,et al.  The architecture of respiratory supercomplexes , 2016, Nature.

[19]  J. Hirst,et al.  Structure of mammalian respiratory complex I , 2016, Nature.

[20]  M. L. Genova,et al.  Complex I function in mitochondrial supercomplexes. , 2016, Biochimica et biophysica acta.

[21]  L. Nijtmans,et al.  Unraveling the complexity of mitochondrial complex I assembly: A dynamic process. , 2016, Biochimica et biophysica acta.

[22]  R. Rodenburg,et al.  Mitochondrial complex I-linked disease. , 2016, Biochimica et biophysica acta.

[23]  R. Artuch,et al.  Ndufs4 related Leigh syndrome: A case report and review of the literature. , 2016, Mitochondrion.

[24]  J. Smeitink,et al.  Gait analysis in a mouse model resembling Leigh disease , 2016, Behavioural Brain Research.

[25]  S. Dimauro,et al.  Mitochondrial diseases , 2016, Nature Reviews Disease Primers.

[26]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[27]  Gerhard Hummer,et al.  Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I , 2015, Proceedings of the National Academy of Sciences.

[28]  H. Schwalbe,et al.  Mechanistic insight from the crystal structure of mitochondrial complex I , 2015, Science.

[29]  J. Hirst,et al.  Architecture of mammalian respiratory complex I , 2014, Nature.

[30]  Wang Wang,et al.  Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. , 2013, Cell metabolism.

[31]  R. Rodenburg,et al.  A guide to diagnosis and treatment of Leigh syndrome , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[32]  Kelsey P. Taylor,et al.  The mitochondrial disease associated protein Ndufaf2 is dispensable for Complex-1 assembly but critical for the regulation of oxidative stress , 2013, Neurobiology of Disease.

[33]  M. Duarte,et al.  Novel Insights into the Role of Neurospora crassa NDUFAF2, an Evolutionarily Conserved Mitochondrial Complex I Assembly Factor , 2013, Molecular and Cellular Biology.

[34]  J. Smeitink,et al.  Cellular and animal models for mitochondrial complex I deficiency: A focus on the NDUFS4 subunit , 2013, IUBMB life.

[35]  John M. Berrisford,et al.  Crystal structure of the entire respiratory complex I , 2013, Nature.

[36]  U. Brandt,et al.  Respiratory Chain Complex I , 2013 .

[37]  Quincy Teng,et al.  Structural Biology , 2013, Springer US.

[38]  L. E. Formosa,et al.  Gene Knockout Using Transcription Activator-like Effector Nucleases (TALENs) Reveals That Human NDUFA9 Protein Is Essential for Stabilizing the Junction between Membrane and Matrix Arms of Complex I* , 2012, The Journal of Biological Chemistry.

[39]  R. Rodenburg,et al.  Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts. , 2012, Biochimica et biophysica acta.

[40]  R. Palmiter,et al.  Fatal breathing dysfunction in a mouse model of Leigh syndrome. , 2012, The Journal of clinical investigation.

[41]  Antonio Gnoni,et al.  Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases , 2012, FEBS letters.

[42]  F. Sterky,et al.  Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons. , 2012, Human molecular genetics.

[43]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[44]  J. Smeitink,et al.  Pharmacological targeting of mitochondrial complex I deficiency: the cellular level and beyond. , 2012, Mitochondrion.

[45]  R. Palmiter,et al.  Mitochondrial complex III stabilizes complex I in the absence of NDUFS4 to provide partial activity. , 2012, Human molecular genetics.

[46]  R. Palmiter,et al.  Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model , 2011, The Journal of cell biology.

[47]  C. Hunte,et al.  Functional Modules and Structural Basis of Conformational Coupling in Mitochondrial Complex I , 2010, Science.

[48]  R. Rodenburg,et al.  Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. , 2010, Developmental disabilities research reviews.

[49]  R. Palmiter,et al.  Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome , 2010, Proceedings of the National Academy of Sciences.

[50]  J. Smeitink,et al.  Mitochondrial dynamics in human NADH:ubiquinone oxidoreductase deficiency. , 2009, The international journal of biochemistry & cell biology.

[51]  J. Smeitink,et al.  The antioxidant Trolox restores mitochondrial membrane potential and Ca2+-stimulated ATP production in human complex I deficiency , 2009, Journal of Molecular Medicine.

[52]  R. Rodenburg,et al.  Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. , 2008, Brain : a journal of neurology.

[53]  R. Palmiter,et al.  Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat , 2008, Proceedings of the National Academy of Sciences.

[54]  W. Watt,et al.  Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. , 2008, Cell metabolism.

[55]  Rutger O. Vogel,et al.  Investigation of the complex I assembly chaperones B17.2L and NDUFAF1 in a cohort of CI deficient patients. , 2007, Molecular genetics and metabolism.

[56]  M. Lazarou,et al.  Analysis of the Assembly Profiles for Mitochondrial- and Nuclear-DNA-Encoded Subunits into Complex I , 2007, Molecular and Cellular Biology.

[57]  Ulrich Brandt,et al.  Energy converting NADH:quinone oxidoreductase (complex I). , 2006, Annual review of biochemistry.

[58]  E. Shoubridge,et al.  A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. , 2005, The Journal of clinical investigation.

[59]  J. Smeitink,et al.  Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. , 2005, American journal of physiology. Cell physiology.

[60]  J. Smeitink,et al.  Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. , 2004, Human molecular genetics.

[61]  V. Petruzzella,et al.  Pathological Mutations of the Human NDUFS4 Gene of the 18-kDa (AQDQ) Subunit of Complex I Affect the Expression of the Protein and the Assembly and Function of the Complex* , 2003, Journal of Biological Chemistry.

[62]  Jean-Pierre Mazat,et al.  Mitochondrial threshold effects. , 2003, The Biochemical journal.

[63]  S. Dimauro,et al.  The genetics and pathology of oxidative phosphorylation , 2001, Nature Reviews Genetics.

[64]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[65]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[66]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.