Silicon in the dust formation zone of IRC +10216 as observed with PACS and SPIRE on board Herschel

The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observed the nearest carbon-rich evolved star, IRC+10216, using the PACS (55-210 {\mu}m) and SPIRE (194-672 {\mu}m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v=1 vibrational level. For SiS these transitions range up to J=124-123, corresponding to energies around 6700K, while the highest detectable transition is J=90-89 for SiO, which corresponds to an energy around 8400K. Both species trace the dust formation zone of IRC+10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggested depletion of SiS and SiO due to accretion onto dust grains.

[1]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[2]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[3]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[4]  M. Barlow,et al.  Detection of anhydrous hydrochloric acid, HCl, in IRC +10216 with the Herschel SPIRE and PACS spectrometers. Detection of HCl in IRC +10216 , 2010, 1005.4220.

[5]  D. Witherick,et al.  PACS and SPIRE spectroscopy of the red supergiant VY CMa , 2010, 1005.2952.

[6]  M. Barlow,et al.  Herschel PACS and SPIRE imaging of CW Leonis , 2010, 1005.1433.

[7]  K. Menten,et al.  Circumstellar molecular composition of the oxygen-rich AGB star IK Tauri - II. In-depth non-LTE chemical abundance analysis , 2010, 1004.1914.

[8]  S. Kwok,et al.  A Spectral Line Survey in the 2 and 1.3 mm Windows toward the Carbon-rich Envelope of IRC +10216 , 2008, 0802.1963.

[9]  J. Cernicharo,et al.  A Detailed Analysis of the Dust Formation Zone of IRC +10216 Derived from Mid-Infrared Bands of C2H2 and HCN , 2007, 0709.4390.

[10]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[11]  David A. Naylor,et al.  Apodizing functions for Fourier transform spectroscopy , 2007 .

[12]  G. Melnick,et al.  Water Vapor Emission from IRC +10216 and Other Carbon-Rich Stars: Model Predictions and Prospects for Multitransition Observations , 2007, 0710.1506.

[13]  L. Decin,et al.  The variable mass loss of the AGB star WX Piscium as traced by the CO J=1-0 through 7-6 lines and the dust emission , 2007, 0708.4107.

[14]  M. Lindqvist,et al.  The abundance of SiS in circumstellar envelopes around AGB stars , 2007, 0707.0944.

[15]  A. de Koter,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa , 2006, astro-ph/0606299.

[16]  D. Wilner,et al.  The Distribution of H13CN in the Circumstellar Envelope around IRC+10216 , 2006, 0707.4364.

[17]  J. Cernicharo,et al.  A λ2 mm molecular line survey of the C-star envelope IRC+10216 , 2000 .

[18]  C. Skinner,et al.  The birth of a planetary nebula around the carbon star IRC+10216 , 1998 .

[19]  K. Menten,et al.  Physical Parameters of the IRC +10216 Circumstellar Envelope: New Constraints from Submillimeter Observations , 1997 .

[20]  R. J. Boyle,et al.  Observations of 13.5 micron rotation-vibration lines of SiS in IRC +10216 , 1994 .

[21]  S. Ridgway,et al.  The IRC +10216 Circumstellar Envelope. III. Infrared Molecular Line Profiles , 1993 .

[22]  Nguyen-Quang-Rieu,et al.  The distribution of silicon sulfide in the envelope of IRC+10216 , 1989 .

[23]  P. J. Huggins,et al.  The photodissociation of CO in circumstellar envelopes , 1988 .

[24]  S. Ridgway,et al.  The IRC +10216 Circumstellar Envelope. II. Spatial Measurements of the Dust , 1988 .

[25]  H. M. Dyck,et al.  Carbon Monoxide Emission from Stars in the IRAS and Revised AFGL Catalogs. I. Mass Loss Driven by Radiation Pressure on Dust Grains , 1986 .