Is Helmholtz Resonance a Problem for Micro-jet Actuators?

A theoretical analysis is described that determines the conditions for Helmholtz resonance for a popular class of self-contained microjet actuator used in both synthetic- and pressure-jump (pulse-jet) mode. It was previously shown that the conditions for Helmholtz resonance are identical to those for optimizing actuator performance for maximum mass flux. The methodology is described for numerical-simulation studies on how Helmholtz resonance affects the interaction of active and nominally inactive micro-jet actuators with a laminar boundary layer. Two sets of numerical simulations were carried out. The first set models the interaction of an active actuator with the boundary layer. These simulations confirm that our criterion for Helmholtz resonance is broadly correct. When it is satisfied we find that the actuator cannot be treated as a predetermined wall boundary condition because the interaction with the boundary layer changes the pressure difference across the exit orifice thereby affecting the outflow from the actuator. We further show that strong inflow cannot be avoided even when the actuator is used in pressure-jump mode. In the second set of simulations two-dimensional Tollmien–Schlichting waves, with frequency comparable with, but not particularly close to, the Helmholtz resonant frequency, are incident on a nominally inactive micro-jet actuator. The simulations show that under these circumstances the actuators act as strong sources of 3D Tollmien–Schlichting waves. It is surmised that in the real-life aeronautical applications with turbulent boundary layers broadband disturbances of the pressure field, including acoustic waves, would cause nominally inactive actuators, possibly including pulsed jets, to act as strong disturbance sources. Should this be true it would probably be disastrous for engineering applications of such massless microjet actuators for flow control.

[1]  M. Carpenter,et al.  Quasi-One-Dimsensional Model for Realistic Three-Dimensional Synthetic Jet Actuators , 2006 .

[2]  C. Davies,et al.  A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution , 2001 .

[3]  Lachlan M. Cullen,et al.  Acoustic Receptivity in Boundary Layers with Surface Roughness , 2000 .

[4]  N. Wood,et al.  A study of synthetic jets from rectangular and dual-circular orifices , 2003, The Aeronautical Journal (1968).

[5]  A. Crook,et al.  The development and implementation of synthetic jets for the control of separated flow , 1999 .

[6]  Mark Jabbal,et al.  Towards the Design of Synthetic-jet Actuators for Full-scale Flight Conditions , 2007 .

[7]  H. Schlichting Boundary Layer Theory , 1955 .

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  Theodor Sexl,et al.  Über den von E. G. Richardson entdeckten „Annulareffekt“ , 1930 .

[10]  C. Warsop,et al.  Pulsed Air-jet Actuators for Flow Separation Control , 2007 .

[11]  Duncan A. Lockerby,et al.  Modeling and Design of Microjet Actuators , 2004 .

[12]  Michael Amitay,et al.  MODIFICATION OF LIFTING BODY AERODYNAMICS USING SYNTHETIC JET ACTUATORS , 1998 .

[13]  I. Grant,et al.  An experimental investigation of the formation and development of a wave packet in a laminar boundary layer , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  S. C. Liddle,et al.  Investigation into clustering of synthetic jet actuators for flow separation control applications , 2005, The Aeronautical Journal (1968).

[15]  Mark Sheplak,et al.  Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators , 2002 .

[16]  N. Wood,et al.  Towards the Design of Synthetic-jet Actuators for Full-scale Flight Conditions , 2007 .

[17]  D. Smith,et al.  Interaction of a Synthetic Jet with a Crossflow Boundary Layer , 2002 .

[18]  D. Smith,et al.  Influence of Orifice Orientation on a Synthetic Jet-Boundary-Layer Interaction , 2003 .

[19]  Duncan A. Lockerby,et al.  Numerical simulation of the interaction of microactuators and boundary layers , 2002 .

[20]  H. Helmholtz Theorie der Luftschwingungen in Röhren mit offenen Enden. , 1860 .

[21]  M. Gaster A theoretical model of a wave packet in the boundary layer on a flat plate , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  Q. P. Ha,et al.  A piezoelectrically actuated micro synthetic jet for active flow control , 2003 .

[23]  Othon K. Rediniotis,et al.  Effects of Synthetic Jet Actuation on a Ramping NACA 0015 Airfoil , 2004 .

[24]  Duncan A. Lockerby,et al.  Control of Sublayer Streaks Using Microjet Actuators , 2005 .

[25]  Peter W. Carpenter,et al.  Numerical Investigation and Feasibility Study of a PZT-driven Micro-valve Pulsed-jet Actuator , 2007 .

[26]  Eli Turkel,et al.  Simulation of Synthetic Jets Using Unsteady Reynolds-Averaged Navier-Stokes Equations , 2006 .

[27]  L. Schiller,et al.  Die Entwicklung der laminaren Geschwindigkeitsverteilung und ihre Bedeutung für Zähigkeitsmessungen., (Mit einem Anhang über den Druckverlust turbulenter Strömung beim Eintritt in ein Rohr.)† , 1922 .

[28]  Ann P. Dowling,et al.  Sound and Sources of Sound , 1983 .

[29]  Matthew A. Franchek,et al.  Active control of pressure fluctuations due to flow over Helmholtz resonators , 2002 .

[30]  S. Goldstein Modern developments in fluid dynamics , 1938 .

[31]  Hui Tang,et al.  Modelling of the characteristics of synthetic jet actuators , 2005 .

[32]  Duncan A. Lockerby,et al.  Numerical simulation of boundary-layer control using MEMS actuation , 2001 .

[33]  Nail K. Yamaleev,et al.  A Reduced-Order Model for Efficient Simulation of Synthetic Jet Actuators , 2005 .

[34]  H. Fernholz,et al.  Flow-induced acoustic resonators for separation control , 2002 .

[35]  Shigeo Uchida,et al.  The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe , 1956 .

[36]  Ahmed A. Hassan,et al.  Effects of Zero-Mass “Synthetic” Jets on the Aerodynamics of the NACA-0012 Airfoil , 1998 .