A dual role for the RhoGEF Ephexin5 in regulation of dendritic spine outgrowth

[1]  Geoffrey G. Murphy,et al.  The Rac-GAP alpha2-chimaerin regulates hippocampal dendrite and spine morphogenesis , 2016, Molecular and Cellular Neuroscience.

[2]  S. Mizuarai,et al.  ARHGEF15 overexpression worsens the prognosis in patients with pancreatic ductal adenocarcinoma through enhancing the motility and proliferative activity of the cancer cells , 2016, Molecular Cancer.

[3]  R. Turner,et al.  Hexa (ethylene glycol) derivative of benzothiazole aniline promotes dendritic spine formation through the RasGRF1-Ras dependent pathway. , 2016, Biochimica et biophysica acta.

[4]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[5]  Ryohei Yasuda,et al.  Biochemical Computation for Spine Structural Plasticity , 2015, Neuron.

[6]  L. Fagni,et al.  The RhoGEF DOCK10 is essential for dendritic spine morphogenesis , 2015, Molecular biology of the cell.

[7]  D. Webb,et al.  The Guanine Nucleotide Exchange Factor (GEF) Asef2 Promotes Dendritic Spine Formation via Rac Activation and Spinophilin-dependent Targeting* , 2015, The Journal of Biological Chemistry.

[8]  D. Hwang,et al.  ADP-ribosylation Factor 6 (ARF6) Bidirectionally Regulates Dendritic Spine Formation Depending on Neuronal Maturation and Activity* , 2015, The Journal of Biological Chemistry.

[9]  Mingyan Zhu,et al.  Leptin-Induced Spine Formation Requires TrpC Channels and the CaM Kinase Cascade in the Hippocampus , 2014, The Journal of Neuroscience.

[10]  S. Smirnakis,et al.  Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. , 2014, Developmental cell.

[11]  T. Boeckers,et al.  Rho-GTPase-activating Protein Interacting with Cdc-42-interacting Protein 4 Homolog 2 (Rich2) , 2013, The Journal of Biological Chemistry.

[12]  N. Ip,et al.  Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. , 2013, Biochimica et biophysica acta.

[13]  J. Alder,et al.  Neuropeptide orphanin FQ inhibits dendritic morphogenesis through activation of RhoA , 2013, Developmental neurobiology.

[14]  C. Ha,et al.  SNX26, a GTPase-activating Protein for Cdc42, Interacts with PSD-95 Protein and Is Involved in Activity-dependent Dendritic Spine Formation in Mature Neurons* , 2013, The Journal of Biological Chemistry.

[15]  Bill B. Chen,et al.  SCF E3 ligase F‐box protein complex SCFFBXL19 regulates cell migration by mediating Rac1 ubiquitination and degradation , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  G. Rappold,et al.  The cellular function of srGAP3 and its role in neuronal morphogenesis , 2013, Mechanisms of Development.

[17]  H. Katoh,et al.  Rac GEF Dock4 interacts with cortactin to regulate dendritic spine formation , 2013, Molecular biology of the cell.

[18]  A. Sheikh,et al.  Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development , 2013, Brain Structure and Function.

[19]  K. Zito,et al.  Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis , 2013, Neural plasticity.

[20]  M. Yeckel,et al.  Abl2/Arg Controls Dendritic Spine and Dendrite Arbor Stability via Distinct Cytoskeletal Control Pathways , 2013, The Journal of Neuroscience.

[21]  Travis C. Hill,et al.  LTP-Induced Long-Term Stabilization of Individual Nascent Dendritic Spines , 2013, The Journal of Neuroscience.

[22]  Kohji Nishida,et al.  Arhgef15 Promotes Retinal Angiogenesis by Mediating VEGF-Induced Cdc42 Activation and Potentiating RhoJ Inactivation in Endothelial Cells , 2012, PloS one.

[23]  Y. Hayashi,et al.  The Ca2+ and Rho GTPase signaling pathways underlying activity‐dependent actin remodeling at dendritic spines , 2012, Cytoskeleton.

[24]  P. Penzes,et al.  Deconstructing signal transduction pathways that regulate the actin cytoskeleton in dendritic spines , 2012, Cytoskeleton.

[25]  J. Hell,et al.  Activity-Dependent Growth of New Dendritic Spines Is Regulated by the Proteasome , 2012, Neuron.

[26]  D. Iliopoulos,et al.  Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-β and miR-24: role in epithelial-to-mesenchymal transition , 2012, Oncogene.

[27]  J. Bertoglio,et al.  The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. , 2011, Developmental cell.

[28]  Karen Zito,et al.  Loss of PSD-95 Enrichment Is Not a Prerequisite for Spine Retraction , 2011, The Journal of Neuroscience.

[29]  K. Tolias,et al.  Control of synapse development and plasticity by Rho GTPase regulatory proteins , 2011, Progress in Neurobiology.

[30]  Ruey-Hwa Chen,et al.  PDZ-RhoGEF ubiquitination by Cullin3–KLHL20 controls neurotrophin-induced neurite outgrowth , 2011, The Journal of cell biology.

[31]  B. Sabatini,et al.  Glutamate induces de novo growth of functional spines in developing cortex , 2011, Nature.

[32]  M. Poo,et al.  Phosphorylation of E3 Ligase Smurf1 Switches Its Substrate Preference in Support of Axon Development , 2011, Neuron.

[33]  Alan R. Mardinly,et al.  EphB-Mediated Degradation of the RhoA GEF Ephexin5 Relieves a Developmental Brake on Excitatory Synapse Formation , 2010, Cell.

[34]  Richard Mooney,et al.  Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning , 2010, Nature.

[35]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[36]  Willie F. Tobin,et al.  Rapid formation and selective stabilization of synapses for enduring motor memories , 2009, Nature.

[37]  Karel Svoboda,et al.  Rapid Functional Maturation of Nascent Dendritic Spines , 2009, Neuron.

[38]  T. Bonhoeffer,et al.  Experience leaves a lasting structural trace in cortical circuits , 2008, Nature.

[39]  Alissa M. Weaver,et al.  N-WASP and the Arp2/3 Complex Are Critical Regulators of Actin in the Development of Dendritic Spines and Synapses* , 2008, Journal of Biological Chemistry.

[40]  M. Kitagawa,et al.  Novel insights into FGD3, a putative GEF for Cdc42, that undergoes SCFFWD1/β‐TrCP‐mediated proteasomal degradation analogous to that of its homologue FGD1 but regulates cell morphology and motility differently from FGD1 , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[41]  T. Nagase,et al.  Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway , 2008, Biological chemistry.

[42]  Karen Zito,et al.  Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. , 2008, Journal of visualized experiments : JoVE.

[43]  M. Greenberg,et al.  The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development , 2007, Proceedings of the National Academy of Sciences.

[44]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[45]  D. Liao,et al.  Rac1 Induces the Clustering of AMPA Receptors during Spinogenesis , 2005, The Journal of Neuroscience.

[46]  M. Greenberg,et al.  Eph-Dependent Tyrosine Phosphorylation of Ephexin1 Modulates Growth Cone Collapse , 2005, Neuron.

[47]  Suzanne Paradis,et al.  The Rac1-GEF Tiam1 Couples the NMDA Receptor to the Activity-Dependent Development of Dendritic Arbors and Spines , 2005, Neuron.

[48]  Yue Zhang,et al.  Regulation of Cell Polarity and Protrusion Formation by Targeting RhoA for Degradation , 2003, Science.

[49]  Pascal Jourdain,et al.  Calcium/Calmodulin-Dependent Protein Kinase II Contributes to Activity-Dependent Filopodia Growth and Spine Formation , 2003, The Journal of Neuroscience.

[50]  K. Muramoto,et al.  Bicuculline induces synapse formation on primary cultured accessory olfactory bulb neurons , 2003, The European journal of neuroscience.

[51]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[52]  R. Huganir,et al.  Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin , 2003, Neuron.

[53]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[54]  D. Rotin,et al.  Nedd4 Regulates Ubiquitination and Stability of the Guanine-Nucleotide Exchange Factor CNrasGEF* , 2001, The Journal of Biological Chemistry.

[55]  M. Greenberg,et al.  EphA Receptors Regulate Growth Cone Dynamics through the Novel Guanine Nucleotide Exchange Factor Ephexin , 2001, Cell.

[56]  R. Huganir,et al.  The Neuronal Rho-GEF Kalirin-7 Interacts with PDZ Domain–Containing Proteins and Regulates Dendritic Morphogenesis , 2001, Neuron.

[57]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[58]  R. Yuste,et al.  Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. , 2000, Cerebral cortex.

[59]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[60]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[61]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[62]  M. Ehlers Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system , 2003, Nature neuroscience.