Enhancing the food locations in an Artificial Bee Colony algorithm

Artificial Bee Colony or ABC is one of the newest additions to the class of population based Nature Inspired Algorithms (NIA). In the present study we suggest some modifications in the structure of basic ABC to further improve its performance. The corresponding algorithm proposed in the present study is named Intermediate ABC (I-ABC). In I-ABC, the potential food sources are generated by using the intermediate positions between the uniformly generated random numbers and random numbers generated by opposition based learning (OBL). The proposed I-ABC is further modified by guiding the bees towards the best food location. I-ABC is validated on a set of 15 benchmark problems with bound constraints. The numerical results indicate the competence of the proposed I-ABC algorithm.

[1]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search , 2005, 2005 IEEE Congress on Evolutionary Computation.

[2]  Colin J Burgess,et al.  Can genetic programming improve software effort estimation? A comparative evaluation , 2001, Inf. Softw. Technol..

[3]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[4]  Victor R. Basili,et al.  A meta-model for software development resource expenditures , 1981, ICSE '81.

[5]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks , 2007, MDAI.

[6]  Yew-Soon Ong,et al.  A Probabilistic Memetic Framework , 2009, IEEE Transactions on Evolutionary Computation.

[7]  Enrique Alba,et al.  Restart particle swarm optimization with velocity modulation: a scalability test , 2011, Soft Comput..

[8]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[9]  Ali Husseinzadeh Kashan,et al.  DisABC: A new artificial bee colony algorithm for binary optimization , 2012, Appl. Soft Comput..

[10]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[11]  Zhao Xinchao,et al.  Simulated annealing algorithm with adaptive neighborhood , 2011 .

[12]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[13]  Carlos García-Martínez,et al.  Memetic Algorithms for Continuous Optimisation Based on Local Search Chains , 2010, Evolutionary Computation.

[14]  Nenad Mladenovic,et al.  Gaussian variable neighborhood search for continuous optimization , 2011, Comput. Oper. Res..

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[17]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[18]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[19]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[20]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Panos M. Pardalos,et al.  Speeding up continuous GRASP , 2010, Eur. J. Oper. Res..

[22]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[23]  Milan Tuba,et al.  Guided artificial bee colony algorithm , 2011 .

[24]  Shahryar Rahnamayan,et al.  A novel population initialization method for accelerating evolutionary algorithms , 2007, Comput. Math. Appl..

[25]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem , 2011, Inf. Sci..

[26]  Xiujuan Lei,et al.  Improved artificial bee colony algorithm and its application in data clustering , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[27]  Nurhan Karaboga,et al.  A new design method based on artificial bee colony algorithm for digital IIR filters , 2009, J. Frankl. Inst..

[28]  Tiranee Achalakul,et al.  The best-so-far selection in Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[29]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[30]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[31]  Jeng-Shyang Pan,et al.  Enhanced Artificial Bee Colony Optimization , 2022 .

[32]  Alok Singh,et al.  An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem , 2009, Appl. Soft Comput..

[33]  José L. Verdegay,et al.  A centralised cooperative strategy for continuous optimisation: The influence of cooperation in performance and behaviour , 2013, Inf. Sci..

[34]  Xinling Shi,et al.  On the Analysis of Performance of the Improved Artificial-Bee-Colony Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.

[35]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems , 2007, IFSA.

[36]  M. Montaz Ali,et al.  A derivative-free variant called DFSA of Dekkers and Aarts' continuous simulated annealing algorithm , 2012, Appl. Math. Comput..

[37]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[38]  Sanyang Liu,et al.  Improved artificial bee colony algorithm for global optimization , 2011 .

[39]  Junjie Li,et al.  Structural inverse analysis by hybrid simplex artificial bee colony algorithms , 2009 .

[40]  Francisco Gortázar,et al.  Path relinking for large-scale global optimization , 2011, Soft Comput..

[41]  Ying-Ping Chen,et al.  Introducing recombination with dynamic linkage discovery to particle swarm optimization , 2006, GECCO.

[42]  Yilong Yin,et al.  SAR image segmentation based on Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[43]  J. W. Ponton,et al.  Alternatives to neural networks for inferential measurement , 1993 .

[44]  Haibin Duan,et al.  An Improved Quantum Evolutionary Algorithm Based on Artificial Bee Colony Optimization , 2009 .

[45]  R. Srinivasa Rao,et al.  Optimization of Distribution Network Configuration for Loss Reduction Using Artificial Bee Colony Algorithm , 2008 .

[46]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[47]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[48]  Mustafa Sonmez,et al.  Artificial Bee Colony algorithm for optimization of truss structures , 2011, Appl. Soft Comput..

[49]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[50]  Dusan Ramljak,et al.  Bee colony optimization for the p-center problem , 2011, Comput. Oper. Res..

[51]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[52]  Pedro J. Ballester,et al.  Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX , 2005, 2005 IEEE Congress on Evolutionary Computation.

[53]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[54]  Faming Liang,et al.  Annealing evolutionary stochastic approximation Monte Carlo for global optimization , 2011, Stat. Comput..

[55]  Yueh-Min Huang,et al.  A new bee colony optimization algorithm with idle-time-based filtering scheme for open shop-scheduling problems , 2011, Expert Syst. Appl..

[56]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[57]  Alaa F. Sheta,et al.  Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects , 2006 .

[58]  Weifeng Gao,et al.  A modified artificial bee colony algorithm , 2012, Comput. Oper. Res..

[59]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[60]  Reza Akbari,et al.  On the performance of bee algorithms for resource-constrained project scheduling problem , 2011, Appl. Soft Comput..

[61]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[62]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[63]  Chris F. Kemerer,et al.  An empirical validation of software cost estimation models , 1987, CACM.

[64]  Türkay Dereli,et al.  A hybrid 'bee(s) algorithm' for solving container loading problems , 2011, Appl. Soft Comput..

[65]  Junjie Li,et al.  Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions , 2011, Inf. Sci..

[66]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[67]  Fred W. Glover,et al.  Hybrid scatter tabu search for unconstrained global optimization , 2011, Ann. Oper. Res..

[68]  Guoqiang Li,et al.  Development and investigation of efficient artificial bee colony algorithm for numerical function optimization , 2012, Appl. Soft Comput..

[69]  Roberto Schirru,et al.  Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization , 2011 .

[70]  Quan-Ke Pan,et al.  Harmony search algorithm with dynamic control parameters , 2012, Appl. Math. Comput..

[71]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[72]  Dervis Karaboga,et al.  Artificial bee colony programming for symbolic regression , 2012, Inf. Sci..

[73]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[74]  Dervis Karaboga,et al.  Artificial bee colony algorithm for large-scale problems and engineering design optimization , 2012, J. Intell. Manuf..

[75]  Ajith Abraham,et al.  Adaptive Computational Chemotaxis in Bacterial Foraging Optimization: An Analysis , 2009, IEEE Transactions on Evolutionary Computation.

[76]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[77]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[78]  Jianchao Zeng,et al.  Comparison and Analysis of the Selection Mechanism in the Artificial Bee Colony Algorithm , 2009, 2009 Ninth International Conference on Hybrid Intelligent Systems.

[79]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[80]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[81]  Ville Tirronen,et al.  Scale factor local search in differential evolution , 2009, Memetic Comput..

[82]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[83]  Abdel-Rahman Hedar,et al.  Tabu search with multi-level neighborhood structures for high dimensional problems , 2011, Applied Intelligence.

[84]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[85]  David Naso,et al.  Compact Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.