Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity—at Depth and in Real Time

We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach "integrated neurophotonics"; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution (e.g., within a 1-mm3 volume of mouse cortex comprising ∼100,000 neurons). We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.

[1]  Wesley D. Sacher,et al.  Beam-Steering Nanophotonic Phased-Array Neural Probes , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[2]  Xianshu Luo,et al.  Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. , 2019, Optics express.

[3]  Jennifer Lippincott-Schwartz,et al.  Multispectral Live‐Cell Imaging , 2018, Current protocols in cell biology.

[4]  Rory R. Duncan,et al.  A $256\times256$ , 100-kfps, 61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications , 2018, IEEE Transactions on Electron Devices.

[5]  G. Buzsáki,et al.  Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals , 2015, Neuron.

[6]  Wiendelt Steenbergen,et al.  State-of-the art of acousto-optic sensing and imaging of turbid media. , 2012, Journal of biomedical optics.

[7]  Yoshinori Shichida,et al.  Evolution of opsins and phototransduction , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  Thomas G. Bifano,et al.  Simultaneous multiplane imaging with reverberation two-photon microscopy , 2020, Nature Methods.

[9]  A. Cheng,et al.  simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing , 2011 .

[10]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[11]  Violeta G. Lopez-Huerta,et al.  Population imaging of neural activity in awake behaving mice , 2019, Nature.

[12]  Jerome Mertz,et al.  Optical sectioning microscopy with planar or structured illumination , 2011, Nature Methods.

[13]  Liam Paninski,et al.  Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data , 2016, eLife.

[14]  P. Ruther,et al.  Tapered Fibers Combined With a Multi-Electrode Array for Optogenetics in Mouse Medial Prefrontal Cortex , 2018, Front. Neurosci..

[15]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[16]  Wesley D. Sacher,et al.  Implantable photonic neural probes for light-sheet fluorescence brain imaging , 2020, bioRxiv.

[17]  Nicholas A. Steinmetz,et al.  Distributed coding of choice, action, and engagement across the mouse brain , 2019, Nature.

[18]  K. Wise,et al.  A three-dimensional microelectrode array for chronic neural recording , 1994, IEEE Transactions on Biomedical Engineering.

[19]  Liam Paninski,et al.  Rapid mesoscale volumetric imaging of neural activity with synaptic resolution , 2020, Nature Methods.

[20]  Lagnajeet Pradhan,et al.  Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice , 2019, Cell.

[21]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[22]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[23]  E. Charbon,et al.  A 512 × 512 SPAD Image Sensor With Integrated Gating for Widefield FLIM , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  K. Najafi,et al.  Scaling limitations of silicon multichannel recording probes , 1990, IEEE Transactions on Biomedical Engineering.

[25]  L V Wang,et al.  Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model. , 2001, Optics letters.

[26]  R. Yuste Imaging : a laboratory manual , 2011 .

[27]  Dim-Lee Kwong,et al.  Suspended optical fiber-to-waveguide mode size converter for silicon photonics. , 2010, Optics express.

[28]  Andreas T. Schaefer,et al.  Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo , 2011, Nature Neuroscience.

[29]  Barry R. Masters Imaging: A Laboratory Manual , 2010 .

[30]  J. Huisken,et al.  A guide to light-sheet fluorescence microscopy for multiscale imaging , 2017, Nature Methods.

[31]  Oscar Herreras,et al.  Local Field Potentials: Myths and Misunderstandings , 2016, Front. Neural Circuits.

[32]  Mario Negrello,et al.  NINscope, a versatile miniscope for multi-region circuit investigations , 2020, eLife.

[33]  Gilles Laurent,et al.  Estimating Firing Rates from Calcium Signals in Locust Projection Neurons in Vivo , 2007, Frontiers in neural circuits.

[34]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[35]  Fritjof Helmchen,et al.  Miniaturized selective plane illumination microscopy for high-contrast in vivo fluorescence imaging. , 2010, Optics letters.

[36]  Edward M. Callaway,et al.  Genetic Dissection of Neural Circuits: A Decade of Progress. , 2018, Neuron.

[37]  Jae-Woong Jeong,et al.  Soft Materials in Neuroengineering for Hard Problems in Neuroscience , 2015, Neuron.

[38]  Sotiris C Masmanidis,et al.  Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes. , 2015, Journal of neurophysiology.

[39]  P. Andersen,et al.  Association between brain temperature and dentate field potentials in exploring and swimming rats. , 1993, Science.

[40]  Mario Negrello,et al.  NINscope: a versatile miniscope for multi-region circuit investigations , 2019, bioRxiv.

[41]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[42]  Jun Ohta,et al.  Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters , 2018, Biomedical optics express.

[43]  Glen Kramer,et al.  Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review (Invited) , 2005 .

[44]  Gabriel B. Mindlin,et al.  Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus , 2017, PLoS Comput. Biol..

[45]  M. Ducros,et al.  Encoded multisite two-photon microscopy , 2013, Proceedings of the National Academy of Sciences.

[46]  K. Svoboda,et al.  A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging , 2016, bioRxiv.

[47]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[48]  F. Wise,et al.  In vivo three-photon microscopy of subcortical structures within an intact mouse brain , 2012, Nature Photonics.

[49]  Benjamin F. Grewe,et al.  High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor , 2015, Science.

[50]  Anatol C. Kreitzer,et al.  A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice , 2018, Cell.

[51]  Justin C. Williams,et al.  Flexible polyimide-based intracortical electrode arrays with bioactive capability , 2001, IEEE Transactions on Biomedical Engineering.

[52]  Dominic Goodwill,et al.  Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions. , 2017, Optics express.

[53]  Jérôme Lecoq,et al.  Wide. Fast. Deep: Recent Advances in Multiphoton Microscopy of In Vivo Neuronal Activity , 2019, The Journal of Neuroscience.

[54]  E. Charbon,et al.  High fill-factor miniaturized SPAD arrays with a guard-ring-sharing technique. , 2020, Optics express.

[55]  Benjamin F. Grewe,et al.  An amygdalar neural ensemble that encodes the unpleasantness of pain , 2018, Science.

[56]  D. Fitzpatrick,et al.  Three-dimensional mapping of microcircuit correlation structure , 2013, Front. Neural Circuits.

[57]  Chulhong Kim,et al.  Imaging optically scattering objects with ultrasound-modulated optical tomography. , 2007, Optics letters.

[58]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[59]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[60]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[61]  Lihong V. Wang,et al.  Ultrasound‐Modulated Optical Tomography , 2012 .

[62]  Kenneth L. Shepard,et al.  Signal separability in integrated neurophotonics , 2020 .

[63]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[64]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[65]  Hamid Dehghani,et al.  Depth Sensitivity Analysis of high-density imaging arrays for mapping brain function with Diffuse Optical Tomography , 2008 .

[66]  Zhigang Suo,et al.  Syringe-injectable electronics. , 2015, Nature nanotechnology.

[67]  Bo Li,et al.  Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain. , 2018, Biomedical optics express.

[68]  Gilles Laurent,et al.  A Simple Method to Reconstruct Firing Rates from Dendritic Calcium Signals , 2008, Front. Neurosci..

[69]  Kenneth L. Shepard,et al.  A 512-Pixel, 51-kHz-Frame-Rate, Dual-Shank, Lens-Less, Filter-Less Single-Photon Avalanche Diode CMOS Neural Imaging Probe , 2019, IEEE Journal of Solid-State Circuits.

[70]  Alessio Andreoni,et al.  Measuring brain chemistry using genetically encoded fluorescent sensors , 2019 .

[71]  Edward S. Boyden,et al.  A history of optogenetics: the development of tools for controlling brain circuits with light , 2011, F1000 biology reports.

[72]  Wesley D. Sacher,et al.  Nanophotonic Neural Probes for in Vivo Light Sheet Imaging , 2019 .

[73]  Andreas S Tolias,et al.  In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain , 2017, Nature Methods.

[74]  Terri L. Gilbert,et al.  The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins , 1993, Neuron.

[75]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[76]  Michal Lipson,et al.  Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation , 2018, Nature Biomedical Engineering.

[77]  Rahul Sarpeshkar,et al.  Can One Concurrently Record Electrical Spikes from Every Neuron in a Mammalian Brain? , 2019, Neuron.

[78]  Wesley D. Sacher,et al.  Nanophotonic Neural Probes for in Vivo Light Sheet Imaging , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[79]  Balázs Rózsa,et al.  Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes , 2012, Nature Methods.

[80]  A. Vaziri,et al.  High-speed volumetric imaging of neuronal activity in freely moving rodents , 2018, Nature Methods.

[81]  Anatol C. Kreitzer,et al.  Thermal constraints on in vivo optogenetic manipulations , 2019, Nature Neuroscience.

[82]  Eran Stark,et al.  Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. , 2014, Journal of neurophysiology.

[83]  Mili Patel,et al.  Soma-Targeted Imaging of Neural Circuits by Ribosome Tethering , 2020, Neuron.

[84]  Mohamed S. Emara,et al.  Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber , 2017, Nature Neuroscience.

[85]  J Mertz,et al.  Odor-evoked calcium signals in dendrites of rat mitral cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Heping Cheng,et al.  Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice , 2017, Nature Methods.

[87]  Trevor Michael Fowler Silicon Neural Probes for Stimulation of Neurons and the Excitation and Detection of Proteins in the Brain , 2019 .

[88]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[89]  Jiho Joo,et al.  A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips. , 2013, Optics express.

[90]  Takashi Kawashima,et al.  A genetically encoded fluorescent sensor for in vivo imaging of GABA , 2018, Nature Methods.

[91]  Toshihiko Noda,et al.  Needle-Type Imager Sensor With Band-Pass Composite Emission Filter and Parallel Fiber-Coupled Laser Excitation , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[92]  Wolfgang Sadee,et al.  The venus flytrap of periplasmic binding proteins: An ancient protein module present in multiple drug receptors , 1999, AAPS PharmSci.

[93]  Katarzyna Zarychta,et al.  Ultimate spatial resolution with Diffuse Optical Tomography. , 2009, Optics express.

[94]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[95]  Ravinder Dahiya,et al.  Wafer Scale Transfer of Ultrathin Silicon Chips on Flexible Substrates for High Performance Bendable Systems , 2018 .

[96]  S L Jacques,et al.  Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media. , 1995, Optics letters.

[97]  Andreas S. Tolias,et al.  Precision Calcium Imaging of Dense Neural Populations via a Cell-Body-Targeted Calcium Indicator , 2019, Neuron.

[98]  K. Wise,et al.  An integrated-circuit approach to extracellular microelectrodes. , 1970, IEEE transactions on bio-medical engineering.

[99]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[100]  Hang Yu,et al.  Light-Sheet Microscopy in Neuroscience. , 2019, Annual review of neuroscience.

[101]  David M. Coleman,et al.  A Two-Dimensional Fluorescence Lifetime Imaging System Using a Gated Image Intensifier , 1991 .

[102]  Peter O'Brien,et al.  Integrated bio-photonics to revolutionize health care enabled through PIX4life and PIXAPP , 2018, BiOS.

[103]  Misha B. Ahrens,et al.  Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy , 2015, Neuron.

[104]  Benjamin W. Avants,et al.  Light sheet illumination with an integrated photonic probe , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[105]  Alyosha Molnar,et al.  Light field image sensors based on the Talbot effect. , 2009, Applied optics.

[106]  P. Barber Absorption and scattering of light by small particles , 1984 .

[107]  Peyman Golshani,et al.  Breakdown of spatial coding and interneuron synchronization in epileptic mice , 2020, Nature Neuroscience.

[108]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[109]  Michael Z. Lin,et al.  A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality , 2018, Cell.

[110]  Fabrizio Gabbiani,et al.  Optogenetic manipulation of medullary neurons in the locust optic lobe. , 2018, Journal of neurophysiology.

[111]  Amir M. Sodagar,et al.  Microelectrodes, Microelectronics, and Implantable Neural Microsystems , 2008, Proceedings of the IEEE.

[112]  Timothy J Gardner,et al.  An open source, wireless capable miniature microscope system , 2017, Journal of neural engineering.

[113]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[114]  A. Nimmerjahn,et al.  Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors , 2018, Science.

[115]  David Fitzpatrick,et al.  Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR , 2018, Nature Methods.

[116]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[117]  Jerome Mertz,et al.  Two-photon microscopy in brain tissue: parameters influencing the imaging depth , 2001, Journal of Neuroscience Methods.

[118]  D. Prince,et al.  Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  M. Tanter,et al.  Light controls cerebral blood flow in naive animals , 2017, Nature Communications.

[120]  Kenneth L. Shepard,et al.  11.5 A 512-Pixel 3kHz-Frame-Rate Dual-Shank Lensless Filterless Single-Photon-Avalanche-Diode CMOS Neural Imaging Probe , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[121]  A. Tosi,et al.  Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes. , 2013, Biomedical optics express.

[122]  Leonardo Sileo,et al.  A Wireless Head-Mountable Device With Tapered Optical Fiber-Coupled Laser Diode for Light Delivery in Deep Brain Regions , 2019, IEEE Transactions on Biomedical Engineering.

[123]  W. A. Clark,et al.  Simultaneous Studies of Firing Patterns in Several Neurons , 1964, Science.

[124]  Michael D Joseph,et al.  Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes , 2011, Journal of neural engineering.

[125]  Joseph P Culver,et al.  High-density diffuse optical tomography for imaging human brain function , 2019, The Review of scientific instruments.

[126]  Jan M. Rabaey,et al.  Physical principles for scalable neural recording , 2013, Front. Comput. Neurosci..

[127]  Edward S Boyden,et al.  Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. , 2012, Optics letters.

[128]  Bruno Weber,et al.  A Bright and Colorful Future for G-Protein Coupled Receptor Sensors , 2020, Frontiers in Cellular Neuroscience.

[129]  Kenneth D Harris,et al.  Challenges and opportunities for large-scale electrophysiology with Neuropixels probes , 2018, Current Opinion in Neurobiology.

[130]  J. J. Macklin,et al.  High-performance calcium sensors for imaging activity in neuronal populations and microcompartments , 2019, Nature Methods.

[131]  F. Acher,et al.  Amino acid recognition by Venus flytrap domains is encoded in an 8‐residue motif , 2005, Biopolymers.

[132]  V. Verkhusha,et al.  Fluorescent Biosensors for Neurotransmission and Neuromodulation: Engineering and Applications , 2019, Front. Cell. Neurosci..

[133]  Andrei Faraon,et al.  Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics , 2016, Neurophotonics.

[134]  R. Mann,et al.  Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms , 2014, Nature Photonics.

[135]  Kenneth L. Shepard,et al.  Fully Integrated Time-Gated 3D Fluorescence Imager for Deep Neural Imaging , 2019, 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[136]  Hui Chen,et al.  Ultra-low temperature silicon nitride photonic integration platform. , 2016, Optics express.

[137]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[138]  Ashok Veeraraghavan,et al.  Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope , 2017, Science Advances.

[139]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[140]  Athanassios G. Siapas,et al.  Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice , 2016, Neuron.

[141]  L V Wang Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model. , 2001, Physical review letters.

[142]  Bruce L. McNaughton,et al.  The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records , 1983, Journal of Neuroscience Methods.

[143]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[144]  Takashi Kawashima,et al.  A genetically encoded fluorescent sensor for in vivo imaging of GABA , 2018, bioRxiv.

[145]  D. Psaltis,et al.  OPTICAL PHASE CONJUGATION FOR TURBIDITY SUPPRESSION IN BIOLOGICAL SAMPLES. , 2008, Nature photonics.

[146]  P. Charette,et al.  Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties. , 2008, Optics express.

[147]  Michael L. Roukes,et al.  Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity , 2016, Nano letters.

[148]  C S Liu,et al.  Low-loss optical waveguides using plasma-deposited silicon nitride. , 1983, Applied optics.

[149]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[150]  Michael Z. Lin,et al.  Genetically encoded indicators of neuronal activity , 2016, Nature Neuroscience.

[151]  X. Zhao,et al.  Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media. , 1997, Applied optics.

[152]  K. Horch,et al.  A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[153]  G. Miesenböck,et al.  Optogenetic control of cells and circuits. , 2011, Annual review of cell and developmental biology.

[154]  Pai-Chi Li,et al.  Photoacoustic imaging of cells in a three-dimensional microenvironment , 2020, Journal of Biomedical Science.

[155]  Y Painchaud,et al.  Time-domain optical imaging: discrimination between scattering and absorption. , 1999, Applied optics.

[156]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[157]  Senova Suhan,et al.  Experimental assessment of the safety and potential efficacy of high irradiance photostimulation of brain tissues , 2017, Scientific Reports.

[158]  Haim Sompolinsky,et al.  Brain-wide Organization of Neuronal Activity and Convergent Sensorimotor Transformations in Larval Zebrafish , 2018, Neuron.

[159]  Xiang Liao,et al.  Targeted Patching and Dendritic Ca2+ Imaging in Nonhuman Primate Brain in vivo , 2017, Scientific Reports.

[160]  J. Assad,et al.  Multipoint-Emitting Optical Fibers for Spatially Addressable In Vivo Optogenetics , 2014, Neuron.

[161]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[162]  Hang Yu,et al.  Real-time volumetric microscopy of in-vivo dynamics and large-scale samples with SCAPE 2.0 , 2019, Nature Methods.

[163]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[164]  Suhasa B. Kodandaramaiah,et al.  Automated whole-cell patch clamp electrophysiology of neurons in vivo , 2012, Nature Methods.

[165]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[166]  Thomas J. McHugh,et al.  Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance , 2020, Nature Communications.

[167]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[168]  E. Musk An Integrated Brain-Machine Interface Platform With Thousands of Channels , 2019, bioRxiv.

[169]  E. Adrian,et al.  The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ. , 2006, The Journal of physiology.

[170]  Michael Z. Lin,et al.  Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo , 2019, Nature Methods.

[171]  Amanda J Wright,et al.  Adaptive optics for deeper imaging of biological samples. , 2009, Current opinion in biotechnology.

[172]  Lina M. Tran,et al.  A compact head-mounted endoscope for in vivo calcium imaging in freely-behaving mice , 2018, bioRxiv.

[173]  Alexander S. Ecker,et al.  Inception loops discover what excites neurons most using deep predictive models , 2019, Nature Neuroscience.

[174]  Leonardo Sileo,et al.  Depth-resolved fiber photometry with a single tapered optical fiber implant , 2019, Nature Methods.

[175]  Kishan Dholakia,et al.  Fast volume-scanning light sheet microscopy reveals transient neuronal events , 2018, Biomedical optics express.